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In the paper [1] it is shown that for any sufficiently large Q ∈ N there are intervals I
with length |I| = Q−1/2 which do not contain real algebraic numbers α of degree degα = n
and height H(α) ≤ Q. It was also shown that if |I| > Q−1+ε for ε > 0 then there is at least
c0Q

4|I| of real algebraic numbers α ∈ I such that degα = 3 and H(α) ≤ Q.

In the talk we will discuss a generalizations of the above results on the sets of algebraic
numbers of arbitrary degree in the fields of R, C and Qp. In this abstract we formulate the
results for the field of p-adic numbers.

Y. Bugeaud in [2] stated the problem of the length of the interval depends on the height of
algebraic numbers, which form the regular system on this interval. In [2] it is shown that for
a given finite interval I in [−1/2, 1/2] the value of T0(Γ, N(α), I) in the definition of regular
system is equal to

T0(Q, N(α), I) = 104|I|−2 log2 100|I|−1

for n = 1, and in [3] that

T0(A2, N(α), I) = 723|I|−3 log3 72|I|−1

for n = 2, where Ak is the set of real algebraic numbers of degree k. In [1] it is shown that
T0(A3, N(α), I) = c1|I|−4−ε, 0 < ε < 1. Probably, there is a more strong connection between
I and T0(An, N(α), I), namely T0(An, N(α), I) = c2|I|−(n+1). In this paper, we address to Y.
Bugeaud’s problem for the p-adic numbers with arbitrary n.

Throughout c1 = c1(n), c2 = c2(n), ... are constants depending only on n. The Haar
measure of a measurable set S ⊂ Qp is denoted by µ(S). Let Ap be the set of all algebraic
numbers and Q∗p is the extension of Qp containing Ap. Denote by An,p the set of algebraic
numbers of degree n lying in Zp. Let K0 be a disc in Zp. The natural number H(α) denotes
the height of α ∈ Ap, which is the absolute height of the minimal polynomial of α.

Theorem 1. Let K be a finite cylinder in K0. Then there are positive constants c3, c4
and a positive number T0 = c4µ(K)−(n+1) such that for any T ≥ T0 there exist numbers
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α1, . . . , αt ∈ An,p ∩K such that

H(αi) ≤ T 1/(n+1) (1 ≤ i ≤ t),
|αi − αj |p ≥ T−1 (1 ≤ i < j ≤ t),

t ≥ c3Tµ(K).

(1)

Note that from Theorem 1 it follows that the set An,p with the function N(α) = Hn+1(α)
form a regular system in K0.

For positive integer Q and c5, c6 ∈ R+, c7 ∈ R+ ∪ {0} define the set of polynomials

Pn(c6Q
c7) = {P ∈ Z[x] : degP = n, c5Q

c7 < H(P ) ≤ c6Qc7 , c5 < c6}. (2)

Let δ, dn, c8 ∈ R+ and 0 ≤ rn ≤ 1. Denote by L̄n = L̄n(c6Q
rn , δ,K) the set of w ∈ K for

which the system of the inequalities

|P (w)|p < c8Q
−dn , |P ′(w)|p ≤ δ, (3)

has a solution in polynomials P ∈ Pn(c6Q
rn).

The proof of Theorem 1 is based on the following metric result.

Theorem 2. For any real number s, where 0 < s < 1, and for any cylinder K in K0 there
exists a sufficiently large number Q0 = Q0(K) such that for

µ(K) > c9Q
−1
0 , dn ≥ n+ rn, δ ≤ 2−n−5c−n−16 c−18 s2(f(n))−2

and sufficiently large constant c9, which does not depend on Q0, and for all Q > Q0

µ(L̄n) < sµ(K) (4)

holds.

From above it follows that the cylinder K with µ(K) > c9Q
−1 for sufficiently large c9

contains � Qn+1µ(K) algebraic p-adic numbers of degree n and H(α) ≤ Q. Note that if
µ(K) ≤ 1

2Q
−1 then the following result holds which is the complement of Theorem 1 in some

sense.

Theorem 3. For any Q ∈ N there exist the cylinders K with µ(K) ≤ 1
2Q
−1 which do not

contain algebraic numbers α ∈ Qp of degree degα = n, n ≥ 1, and H(α) ≤ Q.

Proof. For the given Q choose s ∈ N satisfying the inequality p−s < 1
2Q
−1. Consider the

cylinderK = K(ps, 12Q
−1). Let α ∈ K be an algebraic number of degree degα = n, n ≥ 1, and

H(α) ≤ Q. It means that α ∈ Qp, α 6= 0, is a root of irreducible polynomial P (x) =
∑n

i=0 aix
i.

If we assume that a0 = 0 then from P (α) = 0 it follows that α(
∑n

i=1 aiα
i−1) = 0. Last implies

that α is a root of polynomial P1(x) =
∑n

i=1 aix
i−1 of degP1 ≤ n − 1 which contradicts to

the fact that degα = n. Therefore, a0 6= 0 and from

a0 = −α
n∑
i=1

aiα
i−1,

we obtain

Q−1 ≤ |a0|p ≤ |α|p max
1≤i≤n

|aiαi−1|p ≤
1

2
Q−1,

which is a contradiction. This completes the proof of Theorem 3. �
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