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Abstract

Let G = (V, E) be a graph on vertex set V = {v1, v2, . . . , vn} and edge set E = E(G) .
Also let di be the degree of vertex vi for i = 1, 2, . . . , n . For each vi ∈ V , the set of neighbors
of vertex vi is denoted by NG(i) or simply Ni. The average degree d of G is defined as
d = 1

n

∑n
i=1 di . If vertices vi and vj are adjacent, we denote that by vivj ∈ E(G). The

adjacency matrix A(G) of G is defined by its entries aij = 1 if vivj ∈ E(G) and 0 otherwise.
Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0 denote the eigenvalues of A(G) . Let D(G) be the
diagonal matrix of vertex degrees. Then the Laplacian matrix of G is L(G) = D(G)−A(G) .
Let µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0 denote the eigenvalues of L(G) . They are usually
called the Laplacian eigenvalues of G . Among all eigenvalues of the Laplacian of a graph,
the most studied is the second smallest, called the algebraic connectivity of a graph. It is
well known that a graph is connected if and only if a = µn−1 > 0 . Besides the algebraic
connectivity, µ1 is the invariant that interested the graph theorists. The spectral graph
theorists are increasingly interested in the largest eigenvalue µ1 of L(G) and this interest
is mainly due to the numerous applications of µ1. The signless Laplacian matrix of G is
Q(G) = D(G) + A(G). Let q1 ≥ q2 ≥ · · · ≥ qn denote the eigenvalues of Q(G). They are
usually called the signless Laplacian eigenvalues of G.

In this talk, we discuss the following problems ([2]-[8]):

Theorem 0.1. Let G be a simple graph of order n ≥ 2. If µ1 = n − 1 and µn−1 = 1, then
both G and G have diameter 3.

Theorem 0.2. Let G be a simple connected graph of order n ≥ 2. If µ1 = n− 1 then

max
vivj∈E(G)

|Ni ∪Nj | = n.

Theorem 0.3. If G is a connected graph on n ≥ 7 vertices with average degree d, then

q2 − d ≥ −1

with equality holding if and only if G ∼= Kn.

Theorem 0.4. Let G be a connected graph of order n ≥ 9. Then

q2 − λ1 ≥ 1−
√
n− 1

with equality if and only if G is the star K1,n−1 .
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Theorem 0.5. Let G be a conneted graph of order n > 2 with diameter D and algebraic
connectivity a(G). Then

a(G) +D ≥ 3 (1)

with equality holding in (1) if and only if G is isomorphic to a graph (H1 ∪H2)∨{•}, where
H1 and H2 are any two graphs such that |V (H1)|+ |V (H2)| = n− 1.

Theorem 0.6. Let G be a graph of order n, minimum degree δ(G) and algebraic connectivity
a(G). Then a(G)− δ(G) is minimum for a graph composed of 2 cliques on ⌈n

2 ⌉ vertices with
a common vertex if n is odd, and linked by an edge if n is even.

Theorem 0.7. Let G be a connected graph on n ≥ 4 vertices with independence number α .
Then

q1 + qn + 2α ≤ 3n− 2

with equality holding if and only if G ∼= CS(n, n− α) .

Theorem 0.8. Let G be a connected graph of order n ≥ 6. Then q1 − qn is minimum for a
path Pn and for an odd cycle Cn.
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