Eigenvalues of graph matrices and graph parameters

Kinkar Ch. Das

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea e-mail: kinkardas2003@googlemail.com

Abstract

Let G = (V, E) be a graph on vertex set $V = \{v_1, v_2, \dots, v_n\}$ and edge set E = E(G). Also let d_i be the degree of vertex v_i for i = 1, 2, ..., n. For each $v_i \in V$, the set of neighbors of vertex v_i is denoted by $N_G(i)$ or simply N_i . The average degree \overline{d} of G is defined as $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$. If vertices v_i and v_j are adjacent, we denote that by $v_i v_j \in E(G)$. The adjacency matrix A(G) of G is defined by its entries $a_{ij} = 1$ if $v_i v_j \in E(G)$ and 0 otherwise. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n-1} \geq \lambda_n = 0$ denote the eigenvalues of A(G). Let D(G) be the diagonal matrix of vertex degrees. Then the Laplacian matrix of G is L(G) = D(G) - A(G). Let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-1} \ge \mu_n = 0$ denote the eigenvalues of L(G). They are usually called the Laplacian eigenvalues of G. Among all eigenvalues of the Laplacian of a graph, the most studied is the second smallest, called the algebraic connectivity of a graph. It is well known that a graph is connected if and only if $a = \mu_{n-1} > 0$. Besides the algebraic connectivity, μ_1 is the invariant that interested the graph theorists. The spectral graph theorists are increasingly interested in the largest eigenvalue μ_1 of L(G) and this interest is mainly due to the numerous applications of μ_1 . The signless Laplacian matrix of G is Q(G) = D(G) + A(G). Let $q_1 \ge q_2 \ge \cdots \ge q_n$ denote the eigenvalues of Q(G). They are usually called the signless Laplacian eigenvalues of G.

In this talk, we discuss the following problems ([2]-[8]):

Theorem 0.1. Let G be a simple graph of order $n \ge 2$. If $\mu_1 = n - 1$ and $\mu_{n-1} = 1$, then both G and \overline{G} have diameter 3.

Theorem 0.2. Let G be a simple connected graph of order $n \ge 2$. If $\mu_1 = n - 1$ then

$$\max_{v_i v_j \in E(G)} |N_i \cup N_j| = n$$

Theorem 0.3. If G is a connected graph on $n \ge 7$ vertices with average degree \overline{d} , then

$$q_2 - \overline{d} \ge -1$$

with equality holding if and only if $G \cong K_n$.

Theorem 0.4. Let G be a connected graph of order $n \ge 9$. Then

$$q_2 - \lambda_1 \ge 1 - \sqrt{n-1}$$

with equality if and only if G is the star $K_{1,n-1}$.

Theorem 0.5. Let G be a connected graph of order n > 2 with diameter D and algebraic connectivity a(G). Then

 $a(G) + D \ge 3 \tag{1}$

with equality holding in (1) if and only if G is isomorphic to a graph $(H_1 \cup H_2) \lor \{\bullet\}$, where H_1 and H_2 are any two graphs such that $|V(H_1)| + |V(H_2)| = n - 1$.

Theorem 0.6. Let G be a graph of order n, minimum degree $\delta(G)$ and algebraic connectivity a(G). Then $a(G) - \delta(G)$ is minimum for a graph composed of 2 cliques on $\lceil \frac{n}{2} \rceil$ vertices with a common vertex if n is odd, and linked by an edge if n is even.

Theorem 0.7. Let G be a connected graph on $n \ge 4$ vertices with independence number α . Then

 $q_1 + q_n + 2\alpha \le 3n - 2$

with equality holding if and only if $G \cong CS(n, n - \alpha)$.

Theorem 0.8. Let G be a connected graph of order $n \ge 6$. Then $q_1 - q_n$ is minimum for a path P_n and for an odd cycle C_n .

Key Words: Graph, Adjacency eigenvalues, Laplacian eigenvalues, Signless laplacian eigenvalues, Diameter, Maximum degree, Minimum degree, Independence number

2000 Mathematics Subject Classification: 05C50

References

- D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs–Theory and Application, Academic Press, New York, 1980.
- K. C. Das, On conjectures involving second largest signless Laplacian eigenvalue of graphs, Linear Algebra Appl. 432 (2010) 3018–3029.
- [3] K. C. Das, Conjectures on index and algebraic connectivity of graphs, Linear Algebra Appl. 433 (2010) 1666–1673.
- [4] K. C. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, Linear Algebra Appl. 435 (2011) 2420–2424.
- [5] K. C. Das, Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs, Discrete Math. 312 (2012) 992–998.
- [6] K. C. Das, Proof of conjectures on adjacency eigenvalues of graphs, Discrete Math. 313 (2013) 19-25.
- [7] K. C. Das, Proof of conjectures involving algebraic connectivity of graphs, Linear Algebra Appl. 438 (2013) 3291–3302.
- [8] K. C. Das, S.-G. Lee, G.-S. Cheon, On the conjecture for certain Laplacian integral spectrum of graphs, Journal of Graph Theory 63 (2010) 106–113.
- [9] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.