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Abstract
A (vertex) k-connected graph is called minimal, if it becomes not k-

connected after deleting any edge. Let us denote by V (G) the set of vertices
of a graph G and v(G) = |V (G)|. Let dG(x) denote the degree of a vertex x
in the graph G and ∆(G) denote the maximal vertex degree of the graph G.
We denote by vk(G) the number of vertices of degree k of a graph G. Clearly,
all vertices of a k-connected graph have degree at least k.

In 1967 minimal biconnected graphs were considered in the papers [1]
and [2]. It can be deduced from the results of these papers that

v2(G) ≥ v(G) + 4

3

for a minimal biconnected graph G.
In 1979 W. Mader [5, 6] has proved a very strong result that generalize

for arbitrary k the one written above:

vk(G) ≥ (k − 1)v(G) + 2k

2k − 1
(1)

for a minimal k-connected graph G. This bound is tight: there are infinite
series of graphs for which the inequality (1) turns to equality. In what follows
we consider such graphs. Let us call them extremal minimal k-connected
graphs.

Definition 1. Let k ≥ 2 and T be a tree with ∆(T ) ≤ k + 1. The graph
Gk,T is constructed from k disjoint copies T1, . . . , Tk of the tree T . For any
vertex a ∈ V (G) we denote by ai the correspondent vertex of the copy Ti. If
dG(a) = j then we add k + 1− j new vertices of degree k that are adjacent
to {a1, . . . , ak}.
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Figure 1: A tree T and correspondent extremal minimal biconnected
graph G2,T .

Clearly, if v(T ) = n then v(Gk,T ) = (2k − 1)n + 2. It is not difficult to
verify that Gk,T is a minimal k-connected graph, and, hence, it is an extremal
graph. A tree T with ∆(T ) = 3 and the graph G2,T are shown on the picture.

In 1982 Oxley [7] presented an algorithm of constructing all extremal
biconnected and triconnected graphs. It was proved here that every ex-
tremal minimal biconnected graph can be obtained from the complete bipar-
tite graph K2,3 by several operations of substituting a vertex of degree two
by a graph K2,2 (joint by two edges to two vertices of the neighborhood of
the vertex that have been substituted). Any extremal minimal 3-connected
graph can be obtained from the graph K3,4 by several operations of substi-
tuting a vertex of degree three by a graph K3,3.

In [12] the author have proved that every minimal biconnected graph is a
graph of type G2,T for some tree T with ∆(T ) ≤ 3. Now we present a similar
result for 3-connected and 4-connected graphs.

Theorem 1. Let k ∈ {3, 4}. Then any minimal k-connected graph G with

vk(G) = (k−1)v(G)+2k
2k−1

is a graph Gk,T for some tree T with ∆(T ) ≤ k + 1.
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