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In this talk I would like to discuss and outline various aspects of planarity, matroid
duality, and matroid isomorphism of graphs and some related topics.

A graph G is matroid dual (matroid isomorphic) to a graph F if M(G) = M∗(F )
(resp., M(G) = M(F )), where M(G) is the forest matroid of G and M∗ is the matroid
dual to matroid M . In other words, G is matroid dual (matroid isomorphic) to F if
E(G) = E(F ) and C(G) = C∗(F ) (resp., C(G) = C(F )), where E(G) is the set of edges
of G, C(G) is the set of circuits of G, and C∗(G) is the set of cocircuits of G.

There are several planarity criteria of graphs. We will focus on the following three
of them:

Kuratowski’s planarity criterion (1930):
A graph G is planar if and only if G has a subdivision of K5 or K33.

Whitney’s planarity criterion (1932):
A graph G is planar if and only if there exists a graph F matroid dual to G, i.e. such
that M(G) = M∗(F ) or, the same, C(G) = C∗(F ).

Kelmans’ planarity criterion (1976):
A 3-connected graph G is planar if and only if every edge of G belongs to exactly two
non-separating circuits of G.

It turns out that each of these planarity criteria can be strengthened in a pretty
natural and interesting way. It is easy to see that the planarity problem for graphs
can be reduced to the problem for 3-connected graphs. It is also easy to show that a 3-
connected graph G distinct from K5 is non-planar if and only if G contains a subdivision
of K3,3.

One of possible strengthening of Kuratowski’s theorem (Kelmans, 1981) is that a
3-connected non-planar graph distinct from K5 always contains a special subdivision of
K3,3, namely, it contains a subdivision S of K3,3 such that some three edges of K3,3

forming a matching are not subdivided in S, i.e. S is a cycle with three overlapping
edges-chords. Moreover, this result is “tight”, namely, there are infinitely many 3-
connected graphs having no subdivisions of K3,3 with four non-subdivided edges or with
two non-subdivided edges adjacent in K3,3.

The above strengthening of Kuratowski’s theorem can further be strengthened for
so called quasi 4-connected non-planar graphs (Kelmans, 1997), namely, such a graph
always contains a subdivision of K3,3 with five non-subdivided edges forming a spanning
tree in K3,3. Again, this result is “tight”, namely, there are infinitely many quasi 4-
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connected non-planar graphs having no non-subdivided edges forming a cycle.
An immediate Corollary from the above result is that any bipartite quasi 4-connected

non-planar graph B contains a subdivision S of K3,3, in which every edge is subdivided
into an odd number of edges, i.e. such that the bicoloring of K3,3 in S can be extended to
the bicoloring of B (Kelmans, 1997). This Corollary is not true for 3-connected bipartite
graphs but remains true for cubic 3-connected bipartite graphs (Kelmans, 1997).

Given graph G and F , we say that G is strongly isomorphic to F if there exists an
isomorphism α from G to F such that the renaming the vertices of F by the names of
vertices in G according to bijection α results in a graph equal to G.

Whitney’s planarity criterion is a part of an interesting Whitney’s picture on “graphs
verses matroids”. This picture also includes (among other things) the following

Whitney’s matroid isomorphism theorem:
Let G and F be graphs without isolated vertices. If G is 3-connected and F is circuit

isomorphic to G, then G is strongly isomorphic to F .

A graph G is called circuit semi-dual to (circuit semi-isomorphic to) F if E(G) =
E(F ) and C(G) ⊆ C∗(F ) (resp., C(G) ⊆ C(F )). The notions “cocircuit semi-dual” and
“cocircuit semi-isomorphic” can be defined similarly. Natural questions are whether
the conclusions of the above Whitney’s theorems remain true if the circuit duality and
circuit isomorphism conditions are replaced, respectively, by circuit semi-duality and
circuit semi-isomorphism or by cocircuit semi-duality and cocircuit semi-isomorphism.
In 1987 we gave complete answers to these questions. In particular, we proved that
the conclusions of the above Whitney’s theorems remain true if the circuit duality and
circuit isomorphism conditions are replaced, respectively, by circuit semi-duality and
circuit semi-isomorphism. Another natural direction to extend the Whitney picture is
to replace the forest matroid of a graph by some other matroids related to a graph. We
have some progress in this direction as well.

Further direction for extensions of the Whitney picture is to consider graphs G1 and
G2 such that E(G1) = E(G2) and A1(G1) ⊆ A2(G2), where Ai(Gi) is the family of
certain edge subsets of Gi not necessarily related with a matroid of Gi. For example, let
D(F ) be the family of the edge subsets of F inducing 2-regular subgraphs in F . In 1976
we were able to prove that if G is 3-connected, E(G) = E(F ), and C(G) ⊆ D(F ), then G
is strongly isomorphic to F . In 1967 Halin and Jung raised the following question along
this line. A k-skein is the union of k openly disjoint paths with common end-vertices.
Let Sk(G) be the family of the edge-sets of k-skeins in G. Graphs G and F are called
k-skein isomorphic if E(G) = E(F ) and Sk(G) = Sk(F ). The Halin-Jung question was:
Is it true that k-connected k-skein isomorphic graphs are strongly isomorphic for k ≥ 3
(except for K4 when k = 3). It turns out that the claim is true for k = 3 (Kelmans,
1980 and Hemminger-Jung, 1982) and there is one counterexample for k = 4 (Kelmans,
1984).

At last we will see that Kelmans’ planarity criterion can also be strengthened for
quasi 4-connected graphs in a pretty interesting way (Kelmans, 1981).
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