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This talk is devoted to the extremal properties of diameter graphs. For more
details we refer the reader to the paper [8], on which this talk is based.

Definition 1. A graph G = (V,E) is a diameter graph in Rd if V ⊂ Rd, V is
finite, diamV = 1 and E ⊆ {(x, y), x, y ∈ Rd, |x − y| = 1}, where |x − y|
denotes the Euclidean distance between x and y.

Analogously, we may define a diameter graph on the sphere Sd
r of radius

r. We think of the sphere being embedded in Rd+1, and the (unit) distance is
induced from the ambient space.

Diameter graphs are closely related to the famous Borsuk problem. In 1933
Borsuk [1] asked, whether any set of diameter 1 in Rd can be partitioned into
(d+ 1) parts of strictly smaller diameter. The positive answer to the question is
known as Borsuk’s conjecture. This was shown to be true in dimensions up to
3. For 60 years the question in higher dimensions remained open, until in 1993
Kahn and Kalai [7] constructed a finite set of points in dimension 1325 that does
not admit a partition into 1326 parts of smaller diameter. The minimal dimension
in which the counterexample is known was reduced by several authors, with a
current record d = 65 due to Bondarenko.

Borsuk’s problem for finite sets in Rd can be formulated in terms of diameter
graphs. Namely, whether it is true that any diameter graph G in Rd satisfies
χ(G) 6 d+1? This and related problems were studied by several authors. In [6]
Hopf and Pannwitz proved that the number of edges in any diameter graph in R2

is at most n, which easily implies Borsuk’s conjecture for finite sets on the plane.
Vázsonyi conjectured, that any diameter graph in R3 on n vertices can have at
most 2n − 2 edges. Again, it is not difficult to see that Vázsonyi’s conjecture
implies Borsuk’s conjecture for finite sets in R3. Vázsonyi’s conjecture was
proved independently by Grünbaum [4], Heppes [5] and Straszewicz [10].

Almost 50 years later, two other papers on this topic appeared. In [2] Dol’nikov
proved that in a diameter graph in R3 any two odd cycles must share a vertex.
Out of this statement he derived Borsuk’s conjecture for finite sets. The method
he introduced was later developed by Swanepoel [12], who managed to give yet
another proof of Vázsonyi’s conjecture.
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In this work we generalize Dol’nikov’s and Swanepoel’s approaches to the
case of the three-dimensional sphere:

Theorem 1. Let X be a finite subset of diameter 1 on S3
r , |X| = n, and G =

G(X) be diameter graph with X as a vertex set. If r > 1/
√

2, then:

1. G has at most 2n− 2 edges.

2. χ(G) 6 4.

3. Any two odd cycles in G have a common vertex.

We utilize this result to study some properties of diameter graphs in R4.
Namely, we investigate the behaviour of the quantity Dd(l, n), which is the
maximum number of cliques of size l in a diameter graph on n vertices in Rd.
Erdős [3] studied Dd(2, n) for different d. He showed that for d > 4 we have
Dd(2, n) = bd/2c−1

2bd/2c n
2 + ō(n2). Swanepoel [11] determinedDd(2, n) for d > 4

and sufficiently large n. Functions Dd(l, n) and similar functions were studied
in several papers. In particular, the following conjecture was raised in [9]:

Conjecture 1 (Schur et. al., [9]). We have Dd(d, n) = n for n > d+ 1.

This was proved by Hopf and Pannwitz for d = 2 in [6] and for d = 3 by
Schur et. al. in [9]. In the latter paper the authors also showed that Dd(d +
1, n) = 1. In this paper we find D4(3, n) for sufficiently large n and D4(4, n)
for all n, thus completing the description of D4(l, n) for different n. We also
refine the result of Swanepoel concerningD4(2, n) by giving a reasonable bound
on n: we show that his result holds for n > 52.

Theorem 2. 1. For n > 52 we have D4(2, n) = F2(n), where

F2(n) =

{
bn/2cdn/2e+ dn/2e+ 1, if n 6≡ 3 mod 4,

bn/2cdn/2e+ dn/2e, if n ≡ 3 mod 4

(this part of the theorem in case of sufficiently large n is due to Swanepoel [11]).

2. For all sufficiently large n we have D4(3, n) = F3(n), where

F3(n) =


(n− 1)2/4 + n, if n ≡ 1 mod 4,

(n− 1)2/4 + n− 1, if n ≡ 3 mod 4,

n(n− 2)/4 + n, if n ≡ 0 mod 2.

3. (Schur’s conjecture in R4) For all n > 5 we have D4(4, n) = n.
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