Exponent of irrationality of some numbers.

Yu. Nesterenko

Moscow State University

For any real irrational number α the *exponent of irrationality* $\mu(\alpha)$ is defined as the supremum of the set of all numbers \varkappa such that inequality

$$\left|\alpha - \frac{p}{q}\right| < q^{-\varkappa}$$

has infinitely many solutions in rational numbers $\frac{p}{q}$. We know that $\mu(e) = 2$ and $\mu(\alpha) = 2$ for any algebraic irrational number α , K. Roth, 1954. Unfortunately precise values of $\mu(\alpha)$ are known only for a small set of numbers. For some classical constants we know only upper bounds for the exponent of irrationality. The best up today bounds are

$\mu(\pi) \le 7,606308\dots$	V. Salikhov, 2008,
$\mu(\pi^2) = \mu(\zeta(2)) \le 5,09541178\dots,$	W. Zudilin, 2013,
$\mu(\zeta(3)) \le 5,513890\dots,$	J. Rhin and C. Viola, 2001,
$\mu(\ln 2) \le 3,57455390\dots$	R. Marcovecchio, 2009.

All known upper bounds for the irrationality exponents are based on effective constructions of rational approximations to numbers under consideration. In the talk we will give a survey of such constructions and specially discuss results noted above. Additionally we discuss a construction of approximations to Catalan constant $G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$. It is still insufficient to prove irrationality of G.