Maximal subsets avoiding arithmetical progressions in sets

Semchankau Aliaksei

Vilnius Conference on Combinatorics and Number Theory

21 July 2017

Let us define a function on sets of integer:

$$f_k(B) = \max |A| : \{A \subseteq B, A \not\supseteq APk\}.$$

APk is a set of arithmetical progressions of length k. It seems that is $f_k(B)$ is small, then B should be structured. Let's consider extremal value of f_k :

$$\phi_k(n) = \min_{|B|=n} f_k(B).$$

Now consider a function f_k on the "most structured" set:

$$g_k(n) = f_k([1,2,\ldots,n])$$

and its "density":

$$\rho_k(n) = g_k(n)/n$$

For $\rho_k(n)$ next bounds are known

$$\frac{1}{e^{c_k\sqrt{\ln n}}} \ll \rho_k(n) \ll \frac{1}{(\ln \ln n)^{s_k}},$$

where are the c_k and s_k depend only only on k. The lower bound is due to Behrend and the upper bound is due to Gowers.

By definition, $\phi_k(n) \leq g_k(n)$ holds, but one can expect, that $\phi_k(n) = g_k(n)$, because, intuitively, [1, 2, ..., n] is very structured and is full of arithmetic progressions. Counterexample:

> $\phi_3(5) = f_3(\{1, 2, 3, 4, 7\}) = 3,$ $g_3(5) = f_3(\{1, 2, 3, 4, 5\}) = 4.$

So, one can suppose, that $\phi_k(n) \sim g_k(n)$.

• Komlós, J., Sulyok, M., Szemerédi, E. (1975):

$$\phi_3(n) \geqslant \left(rac{1}{2^{15}} + o(1)
ight) g_3(n), n
ightarrow \infty$$

• O'Bryant, with no proof:

$$\phi_3(n) \ge \left(\frac{1}{34} + o(1)\right)g_3(n), n \to \infty$$

For any $k \ge 3$ there exist such a sequence $n_1 < n_2 < ...$ so that for any n in this sequence next inequality holds:

$$\phi_k(n) \ge \left(\frac{1}{4} + o(1)\right)g_k(n), n \to \infty,$$

and this sequence is dense enough: any segment of type $[n, ne^{(\ln n)^{\frac{1}{2}+o(1)}}]$ contains at least one number of this sequence.

Definition

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of integers. We call $Y = \{y_1, y_2, ..., y_n\}$ a *compression* of X, if for any *i*, *j*, *k* such that $x_i - 2x_j + x_k = 0$ it is true, that $y_i - 2y_j + y_k = 0$. In other words, Y contains the arithmetical structure of X.

Now we can state a hypothesis:

Hypothesis:

For any $1 > \epsilon > 0$ there exists a function $h(n) = h_{\epsilon}(n)$ which grows slower than any power of n, so that can one take any set X of size n and remove at most ϵn integers, so that the rest set can be compressed into subset of [1, 2, ..., nh(n)].

At the current moment it is proved, that for $\epsilon > 3/4$ one can take $h_{\epsilon}(n) = C_{\epsilon} \ln n$.

Lemma 1:

Any set X of size n can be compressed into subset of segment $[1, \ldots, 4n^4 6^{n/2}]$.

Proof: some manipulations with matrices.

Lemma 2:

If set X of size n belongs to segment $[1, \dots, M]$, where $M = 4n^46^{n/2}$, then $\exists X' \subset X, |X'| \ge |X|/2$ which can be compessed into subset of $[n^3]$.

Proof: one can find prime number $p \le 2n^3$, so that p does not divide any difference $x_i - x_j$. It's easy to see now, that one of the sets

$$X_1 = X/\mathbb{Z}_p \cap [1,\ldots,p/2),$$

$$X_2 = X/\mathbb{Z}_p \cap (p/2,\ldots,p-1],$$

would satisfy our conditions.

Lemma 3:

If set X of size n belongs to segment $[1, \dots 8n^3]$, and $\epsilon > 0$ is given, then $\exists X' \subset X, |X'| \ge (1/2 - \epsilon)|X|$ which can be compressed into subset of segment $[1, \dots, C_{\epsilon}n \ln n]$, where C_{ϵ} is a constant which depends only on ϵ .

Let's consider prime numbers in interval $[2n, \dots, 2cn \ln n]$, where c is some positive constant. By Chebychev, one can find more then cn prime numbers there. Let's enumerate them as p_1, p_2, \dots, p_s , s > cn. Now we count triples (i, j, t), where i, j, t are such that $p_t|(x_i - x_j)$. One can notice, that one pair (i, j) may occur as first 2 arguments only twice because $|x_i - x_j| < 8n^3$ and can't be divisible on 3 different primes, greater than 2n. Thus, there are no more than n^2 such triples. By Dirichlet, some p_t corresponds to less then $n^2/cn = n/c$ triples. Let's extract from X all x_i, x_j which a equal modulo p.

Now all x_i are different modulo p, and we can use the same approach, as in lemma 2.

Now we apply hypothesis to bound value of $\phi_k(n)$, so we will prove that for every set *B* of size *n* inequality $f_k(B) \ge (\frac{1}{4} + o(1))f_k([1, 2, ..., n])$ holds. One can find a subset in *B* with $\sim n/4$ elements, which can be compressed into subset *B'* of segment $[1, ..., O(n \ln n)]$. Let *A* be a maximal set with no *APk*'s in the greater segment $[1, ..., O(n \ln n)]$ (i.e. $|A| = f_k([1, ..., O(n \ln n)])$) One can demonstrate, using some

combinatorical arguments, that we can find shift A, which has large intersection with B'.

Now we can just take a prototype of $B' \cap A$ in B, this prototype would be of size $(\frac{1}{4} + o(1)) g_k(n)$ and would not contain arithmetical progressions of length k.

Improve constant:

It's expected, that inequality $\phi_k(n) \ge (1 + o(1)) g_k(n)$ is true.

Hypothesis for all ϵ :

Prove the hypothesis for all $\epsilon > 0$.

Reverse problem:

What can we say about structure of *B*, if inequality $f_k(B) \leq C\phi_k(n)$ holds?

Thanks for attention!