On the estimates of Kloosterman sums. Small flowers to bouquet to jubilee

Maxim A. Korolev^{*}

*Steklov Mathematical Institute (Moscow, Russia)

Vilnius Conference in Combinatorics and Number Theory 2017, July 17 – 22

M.A. Korolev On the estimates of Kloosterman sums

Introduction

Kloosterman sum $S_q(N) = S_q(N; a, b)$ modulo q of length N is the exponential sum of the type

$$S_q(N) \ = \ \sum_{1 \,\leqslant\, n \,\leqslant\, N}' e_q(a\overline{n} + bn), \qquad \overline{n}n \equiv 1 \pmod{q}$$

Usually we suppose that (a, q) = 1 or (ab, q) = 1. Famous A.WEYL's bound (1948) and property of multiplicativity of Kloosterman sums imply non-trivial bound for $S_q(N)$ for

$$N \geqslant q^{0.5+arepsilon}.$$

If $N \leq \sqrt{q}$, then $S_q(N)$ is called as a "short" sum.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへの

A.A.KARATSUBA (1996): for any q,

$$S_q(N) \,\ll\, N\Delta_1, \quad \Delta_1=rac{1}{(\ln q)^c}, \quad q^arepsilon\leqslant N \,\leqslant\, q^{4/7}, \; c>0$$

(in fact, $c = c(\varepsilon)$ was very small, $c(\varepsilon) \approx ([1/\varepsilon]!)^{-1}$).

M.K. (2000): for any \boldsymbol{q} ,

$$S_q(N) \,\ll\, N\Delta_2, \quad \Delta_2 = rac{(\ln q)^{1/6}}{(\ln N)^{5/24}}\,(\ln\ln q)^5;$$

here

$$e^{(\ln q)^{rac{4}{5}}(\ln\ln q)^5}\leqslant N\leqslant q^{rac{4}{7}}$$

(in fact, $\tau(q)$ should not be very large here).

J.BOURGAIN, M.Z.GARAEV (2013): for prime q,

$$S_q(N) \,\ll\, N\Delta_3, \ \ \Delta_3 = rac{\ln q}{(\ln N)^{3/2}}\,(\ln\ln q)^2;$$

here

$$e^{(\ln q)^{rac{2}{3}}(\ln\ln q)^2}\leqslant N\leqslant q^{rac{4}{7}}.$$

THEOREM 1. For any prime q and

$$e^{(\ln q)^{rac{2}{3}}(\ln\ln q)^{rac{4}{3}}}\leqslant N\leqslant \sqrt{q},$$

we have

$$\sum_{1\,\leqslant\,n\,\leqslant\,N} e_q(a\overline{n})\,\ll\,N\,\Delta, \ \ \Delta=rac{\ln q}{(\ln N)^{3/2}}\,(\ln\ln q)^2.$$

< 61 ►

Ξ.

THEOREM 2. For any prime q and

$$e^{(\ln q)^{rac{2}{3}}(\ln\ln q)^{rac{1}{3}}}\leqslant N\leqslant \sqrt{q},$$

we have

$$\sum_{1\,\leqslant\,n\,\leqslant\,N} e_q(a\overline{n})\,\ll\,N\,rac{\ln D}{D}, \ \ \ D=rac{\ln N}{(\ln q)^{2/3}(\ln\ln q)^{1/3}}.$$

THEOREM 3. For any prime q and

$$e^{(\ln q)^{rac{2}{3}}(\ln\ln q)^{rac{1}{3}}}\leqslant N\leqslant \sqrt{q},$$

we have

$$\sum_{1 \leqslant n \leqslant N} e_q(a\overline{n} + bn) \ll N D^{-3/4}, \quad D \quad \text{is the same as in Theorem 2.}$$

æ -

Key ingredients:

(a) The estimate of $I_k(X)$:

$$ar{p}_1 + \ldots + ar{p}_k \equiv ar{p}_{k+1} + \ldots + ar{p}_{2k} \pmod{q}, \ k < X < p_j < X_1 \leqslant 2X.$$

A.A.Karatsuba:

 $I_k(X) \leqslant k! X^k$, but only for $k(2X)^{2k-1} < q$.

J.Bourgain, M.Z.Garaev:

$$I_k(X) \ll k! X^k igg(rac{k(2X)^{2k-1}}{q} + 1 igg).$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

(b) Estimates of double sums over primes:

$$egin{aligned} W_1 &= \sum_{P$$

(c) The splitting of the set $\{n \leq N\}$ to two sets \mathcal{A} and \mathcal{B} . All the numbers $n \in \mathcal{A}$ have at least two prime factors p and r from special intervals, and all the numbers $n \in \mathcal{B}$ have no such factors. The sum over \mathcal{A} is estimated using the estimates of double sums, and the sum over \mathcal{B} is estimated trivially: $|\mathcal{B}|$ (simple sieve etc.)

Suppose $0 < \alpha < 0.5$ is fixed, and let $q \ge q_0(\alpha)$ be a prime, $N \simeq q^{\alpha}$. Then the estimates of Theorems 1 and 3 yields:

$$\sum_{n \leqslant N} e_q(a\overline{n}) \ll N \, rac{(\ln \ln q)^2}{\sqrt{\ln q}}, \ \sum_{n \leqslant N} e_q(a\overline{n} + bn) \, \ll \, N \, rac{(\ln \ln q)^{1/4}}{\sqrt[4]{\ln q}}.$$

Is it possible to improve these estimates?

The estimates of the double sum has the form: $|W_1| \leq QR\Delta_1$, where

$$\Delta_1 \,=\, 2k^{rac{1}{2s}}s^{rac{1}{2k}}igg\{igg(rac{P^{k-1}}{\sqrt{q}}+rac{\sqrt{q}}{P^k}igg)\cdotigg(rac{R^{s-1}}{\sqrt{q}}+rac{\sqrt{q}}{R^s}igg)igg\}^{rac{1}{2ks}}$$

Suppose that k, s, P, R and $\varepsilon > 0$ satisfy

$$q^{rac{1}{2k}\,+\,arepsilon}\leqslant P\leqslant q^{rac{1}{2(k-1)}\,-\,arepsilon}, \ \ q^{rac{1}{2s}}\leqslant R\leqslant q^{rac{1}{2(s-1)}}.$$

Then

$$rac{P^{k-1}}{\sqrt{q}}+rac{\sqrt{q}}{P^k}\leqslant 2q^{-\,arepsilon(k-1)},\quad rac{R^{s-1}}{\sqrt{q}}+rac{\sqrt{q}}{R^s}\leqslant 1$$

and

$$\Delta_1 \leqslant q^{-\delta}, \hspace{1em} \delta = rac{arepsilon}{2s} igg(1-rac{1}{k}igg)$$

– estimate with power saving factor. If P, R both are close to the "bad" points of the type $q^{\frac{1}{2n}}$ then we have no good estimate.

But if the length of the sum N is not very close to such a bad point $q^{\frac{1}{2n}}$, then the "bad" subset \mathcal{B} becomes very thin! THEOREM 4. Let q be a prime, $k \ge 2$ is fixed, $0 < \alpha < 0.25$, and let $\varepsilon = \alpha/(k^2 - k)$. Then for any N such that

$$q^{rac{1}{2k}+arepsilon}\leqslant N\leqslant q^{rac{1}{2(k-1)}-arepsilon}$$

one has

$$\sum_{n\,\leqslant\,N}e_q(a\overline{n}+bn)\,\ll\,N\,rac{\ln\ln q}{\ln q}.$$

In particular, this bound holds for

$$q^{rac{1}{4}+arepsilon} \leqslant N \leqslant q^{rac{1}{2}-arepsilon}, \quad q^{rac{1}{6}+arepsilon} \leqslant N \leqslant q^{rac{1}{4}-arepsilon} \quad ext{etc.}$$

2. Kloosterman sums to powerful moduli

Suppose $q \ge 2$ be an integer, $d = \prod_{p|q} p$ is radical of q. Modulo q is called powerful if the fraction $\ln d / \ln q$ is small. The classic example is: $p \ge 2$ – fixed prime, $q = p^n$, $n \to +\infty$.

The observation of A.G.POSTNIKOV (1955): in the case $q = p^n$, some problems (character sums, trigonometric sums with complicated functions in the exponent etc.) can be reduced to the estimates of exponential sums with polynomial.

Simplest example: Kloosterman sum modulo $q = p^n$:

$$(1+px)^* \equiv 1-px+(px)^2-\ldots+(-1)^{n-1}(px)^{n-1} \pmod{p^n}$$

– polynomial in x of degree n - 1. H.IWANIEC (1974) treated more general case of powerful moduli. S.A.STEPANOV and I.E.SHPARLINSKI (1989) considered the generalization of Kloosterman sums with rational functions

$$\sum_{c < n \leqslant c+N}' e_q(F(n)/G(n)), \quad F(n)/G(n) \equiv F(n)\overline{G(n)} \pmod{q}.$$

2. Kloosterman sums to powerful moduli

THEOREM 5. Suppose $q \ge q_0$, $d = \operatorname{rad}(q)$, $\gamma = 160^{-4}$, $\gamma_1 = 900$, and let

$$\maxig\{d^{15},e^{\gamma(\ln q)^{rac{2}{3}}}ig\}\leqslant N\leqslant\sqrt{q}$$

Then, for any a, b, c, such that (a, q) = 1, we have:

$$\left|\sum_{c < n \,\leqslant\, c+N}' e_q(a\overline{n} + bn)
ight| \leqslant N \exp{\left(- \gamma \, rac{(\ln N)^3}{(\ln q)^2}
ight)}.$$

Key ingredients: (a) additive shift $n \mapsto n + xy$, (b) I.M.VINOGRADOV mean value theorem, (c) technic of H.IWANIEC.

2. Kloosterman sums to powerful moduli

In THEOREM 5, the radical d should be small in comparison with N: $d \leq N^{\frac{1}{15}}$. In some cases, one needs the estimates for lager d. THEOREM 6. Let $0 < \delta < 0.05$ be fixed, $q \geq q_0(\delta)$,

$$\gamma \ = \ rac{\delta^{\,6}}{2014} igg(\ln rac{1}{\delta} igg)^{-2}, \quad \gamma_1 = rac{1200}{\delta^2} igg(\ln rac{1}{\delta} igg)^{rac{2}{3}}.$$

and, finally, let

$$\max{\{d^{\,2+\delta},e^{\gamma(\ln q)}^{rac{2}{3}}\}}\leqslant N\leqslant q^{rac{\delta}{20}}.$$

Then the estimate of THEOREM 5 holds.

3. "Intermediate case": moduli $q = p^r$ with fixed $r \ge 3$

Let r be a fixed natural number, $p \ge p_0(r)$ is prime and let $q = p^r$. In such case, we can use both J.G.VAN DER CORPUT's method and analogs of I.M.VINOGRADOV's method.

THEOREM 7. Let $r \geqslant 3, \, q = p^r, \, 4p < N < N_1 \leqslant 2N \leqslant \sqrt{q}, \,$ then

$$\sum_{N < n \leqslant N_1}' e_q(a\overline{n}) \ll N \bigg\{ q^{-\alpha} (\ln q)^{\gamma} + \bigg(\frac{(q \ln q)^{\frac{1}{r-1}}}{N} \bigg)^{\beta} \bigg\}, where$$

For example, if $q = p^4$ then this bound is non-trivial for $N \geqslant q^{rac{1}{3} + \epsilon}$

3. "Intermediate case": moduli $q = p^r$ with fixed $r \ge 3$

Key ingredients: I.M.VINOGRADOV's shift $n \mapsto n + xy$ and the estimate

$$J_{k,s}(X) \,\ll\, X^arepsilon(X^k\,+\,X^{2k-rac{1}{2}\,s(s+1)})$$

obtained by J.BOURGAIN, C.DEMETER, L.GUTH (2015). Here $J_{k,s}(X)$ is the number of solutions of the system

$$egin{cases} x_1+\ldots+x_k\ =\ y_1+\ldots+y_k,\ \ldots\ x_1^s+\ldots+x_k^s\ =\ y_1^s+\ldots+y_k^s, \end{cases}$$

with $1 \leq x_j, y_j \leq X, k, s > 1$ are any fixed integers; the factor X^{ε} can be removed if k > 0.5s(s+1).

4. Kloosterman sums over primes

Let

$$T_q(N) \ = \ \sum_{n \,\leqslant\, N}' \Lambda(n) e_q(a\overline{n}).$$

P.MICHEL, E.FOUVRY (1998): $T_q(N) \ll N^{1-\delta}$ for prime q and

$$q^{{3\over 4}+arepsilon}\ll N\leqslant q$$

(here $\delta = \delta(\varepsilon) > 0$ is some constant; the precise value was not given by authors).

M.Z.GARAEV (2010):

$$T_q(N) \ll q^{\varepsilon} (N^{rac{15}{16}} + N^{rac{2}{3}} q^{rac{1}{4}}) q^{\varepsilon}$$

for the same q and N.

4. Kloosterman sums over primes

I.E.SHPARLINSKI, R.BAKER (2011): the same estimate, but for all qJ.BOURGAIN (2009): $T_q(N) \ll N^{1-\delta}$ for prime q and

$$q^{{1\over 2}+arepsilon} \ll N \leqslant q$$

R.BAKER (2012): $\delta = 0.0005 \varepsilon^4$, for the same N and composite q with small "quadratic part".

Thus, the shortest sum in the case of arbitrary q has the length $N \ge q^{\frac{3}{4} + \varepsilon}.$

THEOREM 8. For any q and $q^{0.7+arepsilon} \ll N \leqslant q$ we have

$$T_q(N) \ll N\Delta, \ \ \Delta = \left(q^7 N^{-10}
ight)^{rac{1}{74}} q^arepsilon.$$

4. Kloosterman sums over primes

THEOREM 9. Let p be a prime, $q = p^4$ and let $q^{0.6+\varepsilon} \leq N \leq q$. Then $T_q(N) \ll N\Delta$, where

$$\Delta \,=\, q^{-0.3\,\varepsilon} \,+\, \left(q^3 N^{-5}\right)^{\frac{1}{231}} q^{0.006\,\varepsilon}$$

THEOREM 10. Let p be a prime, $r \ge 5$, $q = p^r$ and let $0 < \varepsilon < (2/r)^2$. Then, for

$$q^{rac{2}{r-1}\,+\,arepsilon}\ll N\leqslant q,$$

we have: $T_q(N) \ll Nq^{-\delta}, \, \delta = arepsilon \, / (2r)^3.$

Key ingredients: (a) Theorem 8 and (b) I.M.VINOGRADOV - R.VAUGHAN identity.

Let $c > 1, c \notin \mathbb{Z}$ be a fixed constant. Then the sequence

$$\mathbb{N}_c \ = \ ig\{m \ = \ ig[n^cig], \ n \ = \ 1, 2, 3, \ldots ig\}$$

is called *Pyatetski-Shapiro sequence* in honour of I.I. PYATETSKII-SHAPIRO. In 1953, he proved that the set \mathbb{N}_c contains infinitely many primes for any fixed $c \in (1, c_0)$ with $c_0 = \frac{12}{11} = 1.090909\ldots$

Moreover, he established that

$$\pi_c(N) \ = \ \#ig\{p\in\mathbb{N}_c, \, p ext{ is prime}, \, p \leqslant Nig\} \ \sim \ rac{N^{\,\gamma}}{\ln N}, \quad \gamma = rac{1}{c}.$$

Now this result is known for $c_0 = \frac{243}{205} = 1.18536...$ (J. RIVAT, J. WU, 2001).

Different arithmetic properties of \mathbb{N}_{c} :

The largest prime factor of $[n^c]$ for infinitely many $n \ge 1$, squarefree and "smooth" numbers in \mathbb{N}_c ; Carmichael numbers with prime factors from \mathbb{N}_c : (G.N. ARKHIPOV, V.N. CHUBARIKOV, 1997; R.C. BAKER, W. BANKS, J. BRUDERN, I.E. SHPARLINSKII, A.J. WEINGARTNER, 2013)

Squares in \mathbb{N}_{c} (K. LIU, I.E. SHPARLINSKII, T.P. ZHANG)

Additive problems with numbers from \mathbb{N}_{c} (A. BALOG, J. FRIEDLANDER, D. TOLEV, M. LAPORTA, S.V. KONYAGIN, S.A. GRITSENKO, M.Z. GARAEV, KA-LAM KUEH, ZH. PETROV et all).

Least quadratic non-residue $n_c(p)$ to prime modulus p (W.D. BANKS, M.Z. GARAEV, D.R. HEATH-BROWN, I.E. SHPARLINSKII).

The problem is to estimate the sum:

$$S_q(c;N) \, = \, \sum_{1 \, \leqslant \, n \, \leqslant \, N} e_q ig(a[n^c]^st ig), \quad 1 < c < c_0.$$

Two aspects of this problem:

- 1) To make the domain $c \in (1, c_0)$ as wide as possible;
- 2) To make the length N of the sum as short as possible.

These aspects suppress each other: the dilation of $(1, c_0)$ leads to the increasing of N, and the decreasing of N leads to small interval $(1, c_0)$. Our aim is to make the sum $S = S_q(c; N)$ more shorter.

THEOREM 11. Let q be a prime and suppose that (κ, λ) is an exponential pair and let $\rho = \kappa + \lambda + \frac{1}{2}$. Then $|S| \ll N\Delta$, where

$$\Delta = \left(rac{q^{h(c)}}{N}
ight)^{ heta(c)} + \left(rac{q^{h_1(c)}}{N}
ight)^{ heta_1(c)},$$

and

$$h(c) \ = \ rac{2c+arrho-1}{c(2+arrho)-c^2arrho-1}$$

 $(h_1, \theta, \theta_1 \text{ are the functions os the same type}).$

This estimate is non-trivial if $N \gg q^{h(c)+\varepsilon}$. To make N small, we should minimize h(c). The pair $\kappa = \frac{32}{205}, \lambda = \frac{32}{205}$ leads to

$$\min_{c>1} h(c) = 2 - \delta, \quad \delta = 0.191538..., \quad c_0 = 1.0504145...$$

The main difficulty: sum over "small n". Simplification of the problem: replace the sum $S_q(c; N)$ by

$$W_q(c;N) \,=\, \sum_{N < n \,\leqslant\, N_1} e_qig(a[n^c]^*ig), \hspace{1em} N symp N_1$$

THEOREM 12. If q is prime,

$$N\!\geqslant\!q^{1+arepsilon}$$

then

$$W_q(c;N) \ll N^{1-\delta}$$

for $1 < c < 1 + \delta_0$ where δ, δ_0 depends on ε .

5. Kloosterman sums over Pyatetski-Shapiro sequences THEOREM 13. If p is prime and $q = p^2$,

$$N \!\geqslant\! q^{rac{3}{4}+arepsilon}$$

then

$$W_q(c;N) \ll N^{1-\delta}$$

for $1 < c < 1 + \delta_0$ where δ, δ_0 depends on ε .

THEOREM 14. The same result holds true for

$$q = p^3, \quad N \geqslant q^{\frac{1}{2} + \varepsilon}; \quad q = p^4, \quad N \geqslant q^{\frac{1}{3} + \varepsilon} \quad \text{etc.}$$

▲母▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Thank you very much for attention!

M.A. Korolev On the estimates of Kloosterman sums

★ E → < E → E</p>