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Introduction

Kloosterman sum Sq(IN) = S4(IN; a, b) modulo g of length IN is the
exponential sum of the type

Sq(N) = Z, eq(am + bn), nmn=1 (mod q)

1<nN

Usually we suppose that (a,q) = 1 or (ab,q) = 1.
Famous A.WEYL’s bound (1948) and property of multiplicativity of
Kloosterman sums imply non-trivial bound for S, (V) for

N > q0.5+€.

If N <,/q, then S4(IN) is called as a “short” sum.
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1. Estimates of short sums

A.A.KARATSUBA (1996): for any g,

S,(N) € NA;, A, = EE<N<g ", ¢>0

(Ing)c’

(in fact, ¢ = c(&) was very small, c(e) = ([1/€]!)~1).

M.K. (2000): for any q,

(Ingq)*/®

Sq(N) <K NAz, A= W

(Inln g)°;

here .
4 5 a
en9)s(nlna)” N < g7

(in fact, 7(q) should not be very large here).
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1. Estimates of short sums

J.BOURGAIN, M.Z.GARAEV (2013): for prime g,

Ingq

2.
(nN)3/2 (Inlng)*;

Sq¢(N) < NAj3, Az =

here
4

e(lnq)%(lnlnq)z < N < q7.
THEOREM 1. For any prime q and

ecmadnmgd N o JE

we have

. Ing %
Z eq(am) € N A, A:W(lnlnq) .

1<n<N
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1. Estimates of short sums

THEOREM 2. For any prime q and

2 1
e(lnq)3(ln1nq)3 < N < \/—7

we have

In D In N

Z eq(an) K N——, D= :
P D (Inq)2/3(Inln q)1/3

THEOREM 3. For any prime q and

2 1
e(lnq)S(lnlnq)3 < N < \/_7
we have

Z eq(am + bn) K N D734 D is the same as in Theorem 2.

1<n<N
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1. Estimates of short sums

Key ingredients:
(a) The estimate of It (X):

P1 + .o+ Pr = Prg1 + .- + P2 (mod q),
k<X <p; < X;<2X.

A.A Karatsuba:
I,(X) <k!X*  butonly for k(2X)%*~1 < q.
J.Bourgain, M.Z.Garaev:

I(X) < k:!X’“<k(2X)2k_l Ak 1).

q
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1. Estimates of short sums

(b) Estimates of double sums over primes:

W, = Z Z F(p)G(r)eq(apr),
P<p< P1 R<r< R
We= > Y  F(p)G(r)eq(apr +bpr), |F|,|G|<1.

P<p< Ps R<r<R;

(c) The splitting of the set {n < N} to two sets A and B. All the
numbers n € A have at least two prime factors p and = from special
intervals, and all the numbers n € B have no such factors. The sum
over A is estimated using the estimates of double sums, and the sum
over B is estimated trivially: |B| (simple sieve etc.)
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1. Estimates of short sums

Suppose 0 < a < 0.5 is fixed, and let g > go () be a prime,
N =< q%. Then the estimates of Theorems 1 and 3 yields:

N (Inlnq)?
eqlan) K N ———,
n;v q(am) e

_ (In1n q)/4
eqs(an+bn) K N ————.
n;N q( + ) m

Is it possible to improve these estimates?

M.A. Korolev On the estimates of Kloosterman sums



1. Estimates of short sums

The estimates of the double sum has the form: |W3| < QRA1, where

{5 1) (57 )

Suppose that k, s, P, R and € > 0 satisfy

‘»—l

A1=2k

N

L-}-E 1 . 1 _ 1
q2k 7" < P < gkl g2 < R < g2,

Then

S

Pk—l Rs—l
T VT g, B VI
va P va @ R
1
Algq_éa 526(1_)
2s k

— estimate with power saving factor. If P, R both are close to the
1

and

“bad” points of the type g2™ then we have no good estimate.
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1. Estimates of short sums

But if the length of the sum IN is not very close to such a bad point
1

q 2™, then the “bad” subset B becomes very thin!

THEOREM 4. Let q be a prime, k > 2 is fized, 0 < a < 0.25, and let
e = a/(k? — k). Then for any N such that

=

1
g%t < N < ¢7®D

one has
Inlnq

Z eq(am +bn) K N .
neN In g

In particular, this bound holds for

1 1 1
qitT*<N<q2~° g6t*<N

N
Q
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2. Kloosterman sums to powerful moduli

Suppose g > 2 be an integer, d = [] p is radical of g. Modulo q is
plq
called powerful if the fraction In d/ In g is small. The classic example

is: p > 2 — fixed prime, g = p™, n — +oo0.
The observation of A.G.POSTNIKOV (1955): in the case g = p™,
some problems (character sums, trigonometric sums with complicated
functions in the exponent etc.) can be reduced to the estimates of
exponential sums with polynomial.

Simplest example: Kloosterman sum modulo g = p™:

1+px)* =1—px+ (px)®> —... 4+ (=) (pz)"~' (mod p™)

— polynomial in x of degree n — 1.

H.IWANIEC (1974) treated more general case of powerful moduli.
S.A.STEPANOV and I.E.SHPARLINSKI (1989) considered the
generalization of Kloosterman sums with rational functions

S eq(F(n)/G(n), F(n)/G(n) = F(n)G(n) (mod q).

c<n<c+N
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2. Kloosterman sums to powerful moduli
THEOREM 5. Suppose q > qo, d = rad (q), v = 160~%, v; = 900,
and let
2
max {d15,67(1“q) } < N < q.
Then, for any a, b, c, such that (a,q) = 1, we have:

(In N)3)
T g2 )

ZI eq(am + bn)‘ < N exp (—

c<n<c+N

Key ingredients: (a) additive shift n — n + xy, (b)
I.M.VINOGRADOV mean value theorem, (¢) technic of H.IWANIEC.
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2. Kloosterman sums to powerful moduli

In THEOREM 5, the radical d should be small in comparison with N:

1
d < N 15 In some cases, one needs the estimates for lager d.
THEOREM 6. Let 0 < § < 0.05 be fized, g > qo(9),

50 (1 1>—2 —1200<1 1>§
7= %014\ "s) 0 T 52 \ s )

and, finally, let

2
max{d2+5,e7(‘“")3} <N < q20.

Then the estimate of THEOREM 5 holds.
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3. “ Intermediate case” : moduli g = p” with fixed » >3

Let 7 be a fixed natural number, p > po(7) is prime and let ¢ = p”.
In such case, we can use both J.G.VAN DER CORPUT’s method and
analogs of I.M.VINOGRADOV’s method.

THEOREM 7. Letr>3,q =p",4p < N < N1 <2N <.,/q, then

5 eatom) <« wfaramar + (LY

N<n < N3 N

1 r—1
- r(r2 —r + 2)2’ B = (r2—r+22+4+r—-1’
1

(0

’7/ =
b4e

For example, if ¢ = p? then this bound is non-trivial for N > q
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3. “ Intermediate case” : moduli g = p” with fixed » >3

Key ingredients: I.M.VINOGRADOV’s shift n — n 4+ xy and the

estimate

—% s(s+1)

Jes(X) < X5(X* + x2* )

obtained by J.BOURGAIN, C.DEMETER, L.GUTH (2015).
Here Ji,s(X) is the number of solutions of the system

1+ ...+xTe = y1 + ...+ Yz,

i +...tx, =y +... + Yz,

with 1 <xj;,y; < X, k,s > 1 are any fixed integers; the factor X*
can be removed if k > 0.5s(s + 1).
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4. Kloosterman sums over primes

Let ,
Ty(N) = Z A(n)eq(am).

n< N

P.MicHEL, E.FOUVRY (1998): T,(N) < N'~9 for prime g and

3
AT <« N<gq

(here = d(&) > 0 is some constant; the precise value was not given
by authors).

M.Z.GARAEV (2010):

2 1
Ty(N) <<11(N16 + N2g%)qg°

for the same g and N.
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4. Kloosterman sums over primes
I.LE.SHPARLINSKI, R.BAKER (2011): the same estimate, but for all g
J.BOURGAIN (2009): T,(N) < N~9 for prime g and

1
14
2" "« N<gq

R.BAKER (2012): § = 0.0005 4, for the same IN and composite q
with small “quadratic part”.

Thus, the shortest sum in the case of arbitrary g has the length
3

N > q*4 + <.

THEOREM 8. For any q and ¢°7t¢ <« N < q we have

1
Tq(N) K NA, A = (q7N—10)74qs_
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4. Kloosterman sums over primes

THEOREM 9. Let p be a prime, g = p* and let ¢°1¢ < N < q. Then
T,(N) K NA, where

1
A = q—0.3€ + (q3N_5)231q0‘006€.

THEOREM 10. Let p be a prime, r > 5, g = p" and let
0 < e < (2/7r)2. Then, for

+€<<N<q,

2
qr—l
we have: T,(N) < Nq=°, 6 =€ /(2r)3.

Key ingredients: (a) Theorem 8 and (b) I.M.VINOGRADOV -
R.VAUGHAN identity.
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5. Kloosterman sums over Pyatetski-Shapiro sequences
Let ¢ > 1, ¢ € Z be a fixed constant. Then the sequence
N, = {m = [nc}, n = 1,2,3,...}

is called Pyatetski-Shapiro sequence in honour of

I.I. PYATETSKII-SHAPIRO. In 1953, he proved that the set N,
contains infinitely many primes for any fixed ¢ € (1, cg) with
co = 2 =1.090909.. ..

— 11
Moreover, he established that
N7 1
InN’ = c

me(N) = #{p € N, pis prime, pgN} ~

Now this result is known for ¢o = % = 1.18536... (J. RIVAT,
J. Wu, 2001).
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5. Kloosterman sums over Pyatetski-Shapiro sequences

Different arithmetic properties of Ng:

The largest prime factor of [n€] for infinitely many n > 1, squarefree
and “smooth” numbers in N.; Carmichael numbers with prime factors
from N.: (G.N. ArkHIPOV, V.N. CHUBARIKOV, 1997; R.C. BAKER,
W. BANKS, J. BRUDERN, I[.E. SHPARLINSKII, A.J. WEINGARTNER,

2013)

Squares in N, (K. Liu, I.E. SHPARLINSKII, T.P. ZHANG)

Additive problems with numbers from N. (A. BALOG,

J. FRIEDLANDER, D. TOLEV, M. LAPORTA, S.V. KONYAGIN,

S.A. GRITSENKO, M.Z. GARAEV, KA-LAM KUEH, ZH. PETROV et
all).

Least quadratic non-residue n.(p) to prime modulus p
(W.D. BANKS, M.Z. GARAEV, D.R. HEATH-BROWN,
I.E. SHPARLINSKII).
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5. Kloosterman sums over Pyatetski-Shapiro sequences

The problem is to estimate the sum:

Sq(c; N) = Z eq(aln*), 1< e < co.

1<n<N
Two aspects of this problem:
1) To make the domain ¢ € (1, ¢cp) as wide as possible;
2) To make the length N of the sum as short as possible.

These aspects suppress each other: the dilation of (1, cg) leads to the
increasing of IN, and the decreasing of IN leads to small interval

(1, Cg).
Our aim is to make the sum S = S;(¢; IN) more shorter.
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5. Kloosterman sums over Pyatetski-Shapiro sequences

THEOREM 11. Let q be a prime and suppose that (k, X) is an
exponential pair and let o = Kk + X + % Then |S| <« NA, where

<qh(c) )0(6) (th(c) )el(c)
A = + ,
N N

2c+0—1
c(24+9)—c?o—1
(h1, 0,01 are the functions os the same type).

and

h(c) =

This estimate is non-trivial if N > ¢™(®)*¢ To make N small, we

should minimize h(c). The pair kK = S22, X = 2= leads to

minh(c) = 26, 6 = 0.191538.... co=1.0504145....
c
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5. Kloosterman sums over Pyatetski-Shapiro sequences

The main difficulty: sum over “small n”. Simplification of the problem:
replace the sum Sq(c; N) by

Wy(e; N) = Z eq(a[nc]*), N =< Ni.
N<n < Ny

THEOREM 12. If q is prime,
N > q1+e

then
Wy(c; N) < N'™°

for1l < c < 1+ d¢ where §, ¢ depends on €.
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5. Kloosterman sums over Pyatetski-Shapiro sequences
THEOREM 13. If p is prime and q = p?,
3
N>qate

then
Wy(e; N) < N'7°

for1l < e < 1+ d¢ where §, ¢ depends on €.

THEOREM 14. The same result holds true for

1, 1,
q=p3 N=q27% q=p* N=q37° etc
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Thank you very much for attention!
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