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G is a group,nontrivial progression in G: ac = b?, a, b, ¢ not all
equal

(warning: ba~! = cb~! is a different condition)

Maximal size X of a progression-free set in a given finite group G7
G = C, (cyclic group of order n): K. F. Roth 1953 — X = o(n),

log log n)?*
(K. O'Bryant 2011) n2~VBleE2n < X < C(Oglocg’gn”)n (T. Bloom 2016

G=Cp: X = o(|G|*7?), p = 4: E. Croot, V. Lev, P. Pach (2016),
even without semi-trivial progressions a- a = b?

p odd prime: J. Ellenberg, D. Gijswijt (2016, soon after)

Proof ingredients: polynomial method (in spirit of Alon's
Combinatorial Nullstellensatz),linear algebraic dimension reasoning
and law of large numbers
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Multiplicative matchings

The set of ordered triples (x;, yi, zi): xiyjzx =1 i=j=k
Progression-free set A: (a,a,a 2).

X (max progession-free set) < Y (max multiplicative matching)
still Y = o(|G[17?) for G = CJ

proof: literally the same

important feature: sharp value of ¢ for fixed p and large n (R.
Kleinberg, W. Sawin, D. Speyer; arbitrary p: finished by S. Norin
and L. Pebody)
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For all subsets A, B C G, there are A; C A, B; C B:

AB C AiBUAB; and |A1| + |B1| < Z.

Max multiplicative matching {(x;,yi,z)} : Y < Z

A = {xi}, B ={y;}.for any k: z,:l = Xiyk = x;yj for x; € Ay or
yj € B1. Thus x, € Ayory, € By. Z = ’Al‘ + ’Bl‘ >Y
Ellenberg's theorem (2016): Z still does not exceed the discussed
bound for X and Y

Proof: the same polynomial and probabilistic parts, but more
involved linear algebraic lemma by R. Meshulam (1985)
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Group rings

G is a group, K is a field
K6l ={z=>c-g:cocKge G
multiplication: natural (convolution of functions on G)

supp(z) = {g : cg # 0}

supp(z122) C supp(z1) - supp(z2)

G linearly acts on C[G] by multiplications
C[G] ~ representation theory of G
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Xo, - .., Xk — K-linear subspaces of K[G], Xo- X1-...- Xk =0
t; = codim X;
Theorem. Ay,...,Ax — arbitrary subsets of G. Then there exist

subsets B; C A;, i =1,...,k, and C C G such that |C| < to,
|Bi| < tj foralli=1,...,k, and

A1As-. . A C CUBA>-. . cAKUA 1By, . AU . .UALAs-. . - Ap_1Bxk.
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Leaders and outsiders

A — linearly ordered, |A| = d, like A={1,2,...,d}

z: A — K a function, not identical 0

the leader ¢(z) and the outsider out(z) are the minimal, corr.
maximal, a € A such that z(a) # 0.

Key lemma. Let W C K” be a linear subspace. Then there are
exactly dim W different leaders of non-zero elements of W (and,
of course, as many different outsiders)

Proof. Gauss elimination. Find a base y1,...,yn in W with
different leaders a; < --- < a. The leader of any non-zero
element z € W, z =3 ciy;, equals a; for j = min{i : ¢; # 0}.
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W' space of functions f on A; X Ay X ... x Ak of the form
f(al,...,ak) :go(al...ak), @ . G- K

Let A; be linearly ordered, then A; x ... x A is lex-ordered
Consider the leaders of non-zero elements of W. What we actually
show: all but at most tp of these leaders may be covered by the
sets By X Ao X ... X A, A1 X By x ... X By, ...,

A1 X Ap X ... x Ak_1 X By for certain subsets B; C A;, |Bj| < t;.
Wo € W: Y (g)g™t € Xo. dim W/ W < to, thus by Key
Lemma all but at most ty leaders of the elements of W are the
leaders of the elements of Wj.

KA C K[G]: span of A;, the outsiders of KA N X; take all but at
most t; values, let B; C A; consist of non-outsiders of the elements
from KA N X;
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Proof

Assume the contrary: Y ¢(g)g~! € Xo, the leader (ci, ..., ck) of
a function ¢(ay ...ax) on A; X ... x A satisfies ¢; ¢ B; for all
i=1,..., k. Exist ; € K4 N X; with outsiders out(n;) = ¢;. Look
at the constant term of the product

[1] (Z@(é’)g_1> “nrem2 ..o =0.

It equals

Z cp(al ce ak)[al]m[az]ng ce [ak]nk,
ai€A;

and by the lexicographic reasoning the onliest non-zero summand is

oler...c)[almle]nz ... [ck]nk # 0,

a contradiction.
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Let p be a prime. Let G = [["_; Cp; be a finite Abelian p-group
with n generators g1, ..., gn, gi generates Cy,, each N; is a power
of p. Fp[G] is generated by the products [[(1 — gj)™, where
m; € {0,1,...,N; — 1}.Fix positive parameters A1,..., \p.
Consider the subspace generated by monomials for which

. m; 1
Z)\j< j —>>0
=YA\N -1 3

Any product fif,f3 for f; € X has some 1 — g; in a power strictly
greater than N; — 1, but (1 — g;)" = 0. Chernoff bound:

codim X < HH(N,'), k(N) = migx_(N_l)/3(1+x+- XN < N
: x>

For CJ the same estimate that polynomial method (E. Croot — V.
Lev — P. Pach, J. Ellenberg — D. Gijswijt) gives. CLP constant for
C; equals k(4). Other proofs for [ Cpr: W. Sawin, E. Naslund
(binomials divisibility), D. Speyer (Witt vectors).
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G = UT(n,F,), |G| = pr(n—1)/2,
gij = id + ejj, i < j; each element of G has unique representation

Qn—1,n _Qn—2n Qg2
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gij and gy commute unless j = k or i = /. In this case we have
relations g;igji = gjigiigi- xj = &; — 1, in Fp[G] we have x =0
and F,[G] has a basis
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If i <j <1 we have (1+x;)(1+ xj) = (14 x;)(1+ x;)(1 + xir),
thus XijXj = XjiXij + Xif + XijXip + XjiXir + XjiXijXi -
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gij = id + ejj, i < j; each element of G has unique representation
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gij and gy commute unless j = k or i = /. In this case we have
relations g;igji = gjigiigi- xj = &; — 1, in Fp[G] we have x =0
and F,[G] has a basis
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If i <j <1 we have (1+x;)(1+ xj) = (14 x;)(1+ x;)(1 + xir),
thus x;ixj = xjxi; + xi + Xjixit + xjxip + xjixjixip. Define a degree of
any word in alphabet {x;}'s as a sum of (j — i) over all used
letters.
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G = UT(n,F,), |G| = pr(n—1)/2,
gij = id + ejj, i < j; each element of G has unique representation

Qn—1,n _Qn—2n 1,2
En— 1ngn 2,n g127 gai,jgp_l-

gij and gy commute unless j = k or i = /. In this case we have
relations g;igji = gjigiigi- xj = &; — 1, in Fp[G] we have x =0
and F,[G] has a basis

Xan—l,n Qp—2.n 0412 0

n—1,n Xn—2,n - - - %12 > <p-1

If i <j <! we have (14 x;)(1+ xj) = (14 x)(1 + x;)(1 + xir),
thus x;ixj = xjxi; + xi + Xjixit + xjxip + xjixjixip. Define a degree of
any word in alphabet {x;}'s as a sum of (j — i) over all used
letters. X: span of reduced monomials of degree strictly greater

than (p —1)(32;;( = 1)/3.



