GROUP ALGEBRA and the STRUCTURE of PRODUCT SET Vilnius Conference in Combinatorics and Number Theory

Fedor Petrov

July 17, 2017

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

G is a group,

(ロ)、

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(warning: $ba^{-1} = cb^{-1}$ is a different condition)

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition)

Maximal size X of a progression-free set in a given finite group G?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition)

Maximal size X of a progression-free set in a given finite group G?

 $G = C_n$ (cyclic group of order *n*): K. F. Roth 1953 — X = o(n),

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

 $G = C_p^n: X = o(|G|^{1-\delta}),$

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

 $G = C_p^n$: $X = o(|G|^{1-\delta})$, p = 4: E. Croot, V. Lev, P. Pach (2016), even without semi-trivial progressions $a \cdot a = b^2$

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

 $G = C_p^n$: $X = o(|G|^{1-\delta})$, p = 4: E. Croot, V. Lev, P. Pach (2016), even without semi-trivial progressions $a \cdot a = b^2$ p odd prime: J. Ellenberg, D. Gijswijt (2016, soon after)

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

 $G = C_p^n$: $X = o(|G|^{1-\delta})$, p = 4: E. Croot, V. Lev, P. Pach (2016), even without semi-trivial progressions $a \cdot a = b^2$ p odd prime: J. Ellenberg, D. Gijswijt (2016, soon after) Proof ingredients: *polynomial method* (in spirit of Alon's Combinatorial Nullstellensatz),

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

 $G = C_p^n$: $X = o(|G|^{1-\delta})$, p = 4: E. Croot, V. Lev, P. Pach (2016), even without semi-trivial progressions $a \cdot a = b^2$ p odd prime: J. Ellenberg, D. Gijswijt (2016, soon after) Proof ingredients: *polynomial method* (in spirit of Alon's Combinatorial Nullstellensatz), *linear algebraic* dimension reasoning

G is a group, nontrivial progression in G: $ac = b^2$, a, b, c not all equal

(warning: $ba^{-1} = cb^{-1}$ is a different condition) Maximal size X of a progression-free set in a given finite group G? $G = C_n$ (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O'Bryant 2011)
$$n2^{-\sqrt{8\log_2 n}} \leq X \leq C \frac{(\log \log n)^4}{\log n} n$$
 (T. Bloom 2016)

 $G = C_p^n$: $X = o(|G|^{1-\delta})$, p = 4: E. Croot, V. Lev, P. Pach (2016), even without semi-trivial progressions $a \cdot a = b^2$ p odd prime: J. Ellenberg, D. Gijswijt (2016, soon after) Proof ingredients: *polynomial method* (in spirit of Alon's Combinatorial Nullstellensatz), *linear algebraic* dimension reasoning and *law of large numbers*

・ロト・(型ト・モト・モー・) しょうくの

The set of ordered triples (x_i, y_i, z_i) : $x_i y_j z_k = 1 \Leftrightarrow i = j = k$

・ロト・日本・モト・モート ヨー うへで

The set of ordered triples (x_i, y_i, z_i) : $x_i y_j z_k = 1 \Leftrightarrow i = j = k$ Progression-free set A: (a, a, a^{-2}) .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The set of ordered triples (x_i, y_i, z_i) : $x_i y_j z_k = 1 \Leftrightarrow i = j = k$ Progression-free set A: (a, a, a^{-2}) . X (max progession-free set) \leq Y (max multiplicative matching)

The set of ordered triples (x_i, y_i, z_i) : $x_i y_j z_k = 1 \Leftrightarrow i = j = k$ Progression-free set A: (a, a, a^{-2}) . X (max progession-free set) $\leq Y$ (max multiplicative matching) still $Y = o(|G|^{1-\delta})$ for $G = C_p^n$

The set of ordered triples (x_i, y_i, z_i) : $x_i y_j z_k = 1 \Leftrightarrow i = j = k$ Progression-free set A: (a, a, a^{-2}) . X (max progession-free set) $\leq Y$ (max multiplicative matching) still $Y = o(|G|^{1-\delta})$ for $G = C_p^n$ proof: literally the same

The set of ordered triples (x_i, y_i, z_i) : $x_i y_j z_k = 1 \Leftrightarrow i = j = k$ Progression-free set A: (a, a, a^{-2}) . X (max progession-free set) $\leq Y$ (max multiplicative matching) still $Y = o(|G|^{1-\delta})$ for $G = C_p^n$ proof: literally the same important feature: sharp value of δ for fixed p and large n (R. Kleinberg, W. Sawin, D. Speyer; arbitrary p: finished by S. Norin and L. Pebody)

<ロ> <@> < E> < E> E のQの

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\} : Y \leq Z$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\}$: $Y \leq Z$ $A = \{x_i\}, B = \{y_j\},$

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\} : Y \leq Z$ $A = \{x_i\}, B = \{y_j\}$, for any k: $z_k^{-1} = x_k y_k = x_i y_j$ for $x_i \in A_1$ or $y_j \in B_1$.

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\} : Y \leq Z$ $A = \{x_i\}, B = \{y_j\}$, for any k: $z_k^{-1} = x_k y_k = x_i y_j$ for $x_i \in A_1$ or $y_j \in B_1$. Thus $x_k \in A_1$ or $y_k \in B_1$.

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\} : Y \leq Z$ $A = \{x_i\}, B = \{y_j\}$, for any k: $z_k^{-1} = x_k y_k = x_i y_j$ for $x_i \in A_1$ or $y_j \in B_1$. Thus $x_k \in A_1$ or $y_k \in B_1$. $Z = |A_1| + |B_1| \geq Y$

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\}$: $Y \leq Z$ $A = \{x_i\}, B = \{y_j\}$, for any k: $z_k^{-1} = x_k y_k = x_i y_j$ for $x_i \in A_1$ or $y_j \in B_1$. Thus $x_k \in A_1$ or $y_k \in B_1$. $Z = |A_1| + |B_1| \geq Y$ Ellenberg's theorem (2016): Z still does not exceed the discussed bound for X and Y

For all subsets $A, B \subset G$, there are $A_1 \subset A, B_1 \subset B$: $AB \subset A_1B \cup AB_1$ and $|A_1| + |B_1| \leq Z$. Max multiplicative matching $\{(x_i, y_i, z_i)\}$: $Y \leq Z$ $A = \{x_i\}, B = \{y_j\}$, for any k: $z_k^{-1} = x_k y_k = x_i y_j$ for $x_i \in A_1$ or $y_j \in B_1$. Thus $x_k \in A_1$ or $y_k \in B_1$. $Z = |A_1| + |B_1| \geq Y$ Ellenberg's theorem (2016): Z still does not exceed the discussed bound for X and Y

Proof: the same polynomial and probabilistic parts, but more involved linear algebraic lemma by R. Meshulam (1985)

(日) (同) (三) (三) (三) (○) (○)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

G is a group, K is a field

G is a group, K is a field

$$K[G] = \left\{ z = \sum c_g \cdot g : c_g \in K, g \in G \right\}$$

G is a group, K is a field

$$K[G] = \left\{ z = \sum c_g \cdot g : c_g \in K, g \in G \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

multiplication: natural (convolution of functions on G)

G is a group, K is a field

$$\mathcal{K}[\mathcal{G}] = \left\{ z = \sum c_g \cdot g : c_g \in \mathcal{K}, g \in \mathcal{G} \right\}$$

multiplication: natural (convolution of functions on G)

$$supp(z) = \{g : c_g \neq 0\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

G is a group, K is a field

$$\mathcal{K}[\mathcal{G}] = \left\{ z = \sum c_g \cdot g : c_g \in \mathcal{K}, g \in \mathcal{G} \right\}$$

multiplication: natural (convolution of functions on G)

$$supp(z) = \{g : c_g \neq 0\}$$

$$supp(z_1z_2) \subset supp(z_1) \cdot supp(z_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Group rings

G is a group, K is a field

$$K[G] = \left\{ z = \sum c_g \cdot g : c_g \in K, g \in G \right\}$$

multiplication: natural (convolution of functions on G)

$$supp(z) = \{g : c_g \neq 0\}$$

 $supp(z_1z_2) \subset supp(z_1) \cdot supp(z_2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G linearly acts on $\mathbb{C}[G]$ by multiplications

Group rings

G is a group, K is a field

$$\mathcal{K}[\mathcal{G}] = \left\{ z = \sum c_g \cdot g : c_g \in \mathcal{K}, g \in \mathcal{G} \right\}$$

multiplication: natural (convolution of functions on G)

$$supp(z) = \{g : c_g \neq 0\}$$

 $supp(z_1z_2) \subset supp(z_1) \cdot supp(z_2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G linearly acts on $\mathbb{C}[G]$ by multiplications $\mathbb{C}[G] \sim$ representation theory of *G*

Nilpotent subspaces

Nilpotent subspaces

X_0, \ldots, X_k — K-linear subspaces of K[G], $X_0 \cdot X_1 \cdot \ldots \cdot X_k = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nilpotent subspaces

 X_0, \ldots, X_k — *K*-linear subspaces of *K*[*G*], $X_0 \cdot X_1 \cdot \ldots \cdot X_k = 0$ $t_i = \operatorname{codim} X_i$

 $X_0, \ldots, X_k - K$ -linear subspaces of K[G], $X_0 \cdot X_1 \cdot \ldots \cdot X_k = 0$ $t_i = \operatorname{codim} X_i$ **Theorem**. A_1, \ldots, A_k — arbitrary subsets of G. Then there exist subsets $B_i \subset A_i$, $i = 1, \ldots, k$, and $C \subset G$ such that $|C| \leq t_0$, $|B_i| \leq t_i$ for all $i = 1, \ldots, k$, and

 $A_1A_2\cdot\ldots\cdot A_k\subset C\cup B_1A_2\cdot\ldots\cdot A_k\cup A_1B_2\cdot\ldots\cdot A_k\cup\ldots\cup A_1A_2\cdot\ldots\cdot A_{k-1}B_k.$

A — linearly ordered,
$$|A| = d$$
, like $A = \{1, 2, \dots, d\}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A — linearly ordered,
$$|A| = d$$
, like $A = \{1, 2, \dots, d\}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A — linearly ordered, |A| = d, like $A = \{1, 2, ..., d\}$ $z : A \rightarrow K$ a function, not identical 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A — linearly ordered, |A| = d, like $A = \{1, 2, ..., d\}$ z : $A \to K$ a function, not identical 0 the leader $\ell(z)$ and the outsider out(z) are the minimal, corr. maximal, $a \in A$ such that $z(a) \neq 0$.

A — linearly ordered, |A| = d, like $A = \{1, 2, ..., d\}$ $z : A \to K$ a function, not identical 0 the leader $\ell(z)$ and the outsider out(z) are the minimal, corr. maximal, $a \in A$ such that $z(a) \neq 0$. **Key lemma.** Let $W \subset K^A$ be a linear subspace. Then there are exactly dim W different leaders of non-zero elements of W (and, of course, as many different outsiders)

A — linearly ordered, |A| = d, like $A = \{1, 2, ..., d\}$ $z : A \to K$ a function, not identical 0 the leader $\ell(z)$ and the outsider out(z) are the minimal, corr. maximal, $a \in A$ such that $z(a) \neq 0$. **Key lemma.** Let $W \subset K^A$ be a linear subspace. Then there are exactly dim W different leaders of non-zero elements of W (and, of course, as many different outsiders) **Proof.** Gauss elimination.

A — linearly ordered, |A| = d, like $A = \{1, 2, ..., d\}$ $z : A \to K$ a function, not identical 0 the leader $\ell(z)$ and the outsider out(z) are the minimal, corr. maximal, $a \in A$ such that $z(a) \neq 0$. **Key lemma.** Let $W \subset K^A$ be a linear subspace. Then there are exactly dim W different leaders of non-zero elements of W (and, of course, as many different outsiders) **Proof**. Gauss elimination. Find a base y_1, \ldots, y_m in W with different leaders $a_1 < \cdots < a_m$.

A — linearly ordered, |A| = d, like $A = \{1, 2, \dots, d\}$ $z: A \rightarrow K$ a function, not identical 0 the leader $\ell(z)$ and the outsider out(z) are the minimal, corr. maximal, $a \in A$ such that $z(a) \neq 0$. **Key lemma.** Let $W \subset K^A$ be a linear subspace. Then there are exactly dim W different leaders of non-zero elements of W (and, of course, as many different outsiders) **Proof**. Gauss elimination. Find a base y_1, \ldots, y_m in W with different leaders $a_1 < \cdots < a_m$. The leader of any non-zero element $z \in W$, $z = \sum c_i y_i$, equals a_i for $j = \min\{i : c_i \neq 0\}$.

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

◆□ → <圖 → < Ξ → < Ξ → Ξ · 9 < @</p>

W: space of functions *f* on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1, \ldots, a_k) = \varphi(a_1 \ldots a_k), \varphi : G \to K$

W: space of functions f on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1, \ldots, a_k) = \varphi(a_1 \ldots a_k), \varphi : G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

W: space of functions f on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1, \ldots, a_k) = \varphi(a_1 \ldots a_k), \varphi : G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of W.

W: space of functions *f* on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1, \ldots, a_k) = \varphi(a_1 \ldots a_k), \ \varphi : G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of *W*. What we actually show: all but at most t_0 of these leaders may be covered by the sets $B_1 \times A_2 \times \ldots \times A_k, \ A_1 \times B_2 \times \ldots \times B_k, \ldots,$ $A_1 \times A_2 \times \ldots \times A_{k-1} \times B_k$ for certain subsets $B_i \subset A_i, \ |B_i| \leq t_i$.

W: space of functions f on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1, \ldots, a_k) = \varphi(a_1 \ldots a_k), \ \varphi : G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of W. What we actually show: all but at most t_0 of these leaders may be covered by the sets $B_1 \times A_2 \times \ldots \times A_k, \ A_1 \times B_2 \times \ldots \times B_k, \ldots,$ $A_1 \times A_2 \times \ldots \times A_{k-1} \times B_k$ for certain subsets $B_i \subset A_i, \ |B_i| \leq t_i$. $W_0 \subset W: \ \sum \varphi(g)g^{-1} \in X_0$.

W: space of functions *f* on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1, \ldots, a_k) = \varphi(a_1 \ldots a_k), \ \varphi : G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of *W*. What we actually show: all but at most t_0 of these leaders may be covered by the sets $B_1 \times A_2 \times \ldots \times A_k, \ A_1 \times B_2 \times \ldots \times B_k, \ldots,$ $A_1 \times A_2 \times \ldots \times A_{k-1} \times B_k$ for certain subsets $B_i \subset A_i, \ |B_i| \leq t_i$. $W_0 \subset W$: $\sum \varphi(g)g^{-1} \in X_0$. dim $W/W_0 \leq t_0$, thus by Key Lemma all but at most t_0 leaders of the elements of *W* are the leaders of the elements of W_0 .

W: space of functions f on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1,\ldots,a_k) = \varphi(a_1\ldots a_k), \varphi: G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of W. What we actually show: all but at most t_0 of these leaders may be covered by the sets $B_1 \times A_2 \times \ldots \times A_k$. $A_1 \times B_2 \times \ldots \times B_k$. \ldots $A_1 \times A_2 \times \ldots \times A_{k-1} \times B_k$ for certain subsets $B_i \subset A_i$, $|B_i| \leq t_i$. $W_0 \subset W$: $\sum \varphi(g)g^{-1} \in X_0$. dim $W/W_0 \leq t_0$, thus by Key Lemma all but at most t_0 leaders of the elements of W are the leaders of the elements of W_0 . $K^{A_i} \subset K[G]$: span of A_i ,

W: space of functions f on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1,\ldots,a_k) = \varphi(a_1\ldots a_k), \varphi: G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of W. What we actually show: all but at most t_0 of these leaders may be covered by the sets $B_1 \times A_2 \times \ldots \times A_k$. $A_1 \times B_2 \times \ldots \times B_k$. \ldots $A_1 \times A_2 \times \ldots \times A_{k-1} \times B_k$ for certain subsets $B_i \subset A_i$, $|B_i| \leq t_i$. $W_0 \subset W$: $\sum \varphi(g)g^{-1} \in X_0$. dim $W/W_0 \leq t_0$, thus by Key Lemma all but at most t_0 leaders of the elements of W are the leaders of the elements of W_0 .

 $K^{A_i} \subset K[G]$: span of A_i , the outsiders of $K^{A_i} \cap X_i$ take all but at most t_i values,

W: space of functions f on $A_1 \times A_2 \times \ldots \times A_k$ of the form $f(a_1,\ldots,a_k) = \varphi(a_1\ldots a_k), \varphi: G \to K$ Let A_i be linearly ordered, then $A_1 \times \ldots \times A_k$ is lex-ordered Consider the leaders of non-zero elements of W. What we actually show: all but at most t_0 of these leaders may be covered by the sets $B_1 \times A_2 \times \ldots \times A_k$. $A_1 \times B_2 \times \ldots \times B_k$. \ldots $A_1 \times A_2 \times \ldots \times A_{k-1} \times B_k$ for certain subsets $B_i \subset A_i$, $|B_i| \leq t_i$. $W_0 \subset W$: $\sum \varphi(g)g^{-1} \in X_0$. dim $W/W_0 \leq t_0$, thus by Key Lemma all but at most t_0 leaders of the elements of W are the leaders of the elements of W_0 . $K^{A_i} \subset K[G]$: span of A_i , the outsiders of $K^{A_i} \cap X_i$ take all but at

 $K^{A_i} \subset K[G]$: span of A_i , the outsiders of $K^{A_i} \cap X_i$ take all but at most t_i values, let $B_i \subset A_i$ consist of *non-outsiders* of the elements from $K^{A_i} \cap X_i$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Assume the contrary:

Assume the contrary: $\sum \varphi(g)g^{-1} \in X_0$, the leader (c_1, \ldots, c_k) of a function $\varphi(a_1 \ldots a_k)$ on $A_1 \times \ldots \times A_k$ satisfies $c_i \notin B_i$ for all $i = 1, \ldots, k$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume the contrary: $\sum \varphi(g)g^{-1} \in X_0$, the leader (c_1, \ldots, c_k) of a function $\varphi(a_1 \ldots a_k)$ on $A_1 \times \ldots \times A_k$ satisfies $c_i \notin B_i$ for all $i = 1, \ldots, k$. Exist $\eta_i \in K^{A_i} \cap X_i$ with outsiders $out(\eta_i) = c_i$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Assume the contrary: $\sum \varphi(g)g^{-1} \in X_0$, the leader (c_1, \ldots, c_k) of a function $\varphi(a_1 \ldots a_k)$ on $A_1 \times \ldots \times A_k$ satisfies $c_i \notin B_i$ for all $i = 1, \ldots, k$. Exist $\eta_i \in K^{A_i} \cap X_i$ with outsiders $out(\eta_i) = c_i$. Look at the constant term of the product

[1]
$$\left(\sum \varphi(g)g^{-1}\right) \cdot \eta_1 \cdot \eta_2 \cdot \ldots \cdot \eta_k = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume the contrary: $\sum \varphi(g)g^{-1} \in X_0$, the leader (c_1, \ldots, c_k) of a function $\varphi(a_1 \ldots a_k)$ on $A_1 \times \ldots \times A_k$ satisfies $c_i \notin B_i$ for all $i = 1, \ldots, k$. Exist $\eta_i \in K^{A_i} \cap X_i$ with outsiders $out(\eta_i) = c_i$. Look at the constant term of the product

$$[1] \left(\sum \varphi(g)g^{-1}\right) \cdot \eta_1 \cdot \eta_2 \cdot \ldots \cdot \eta_k = 0.$$

It equals

$$\sum_{a_i\in A_i}\varphi(a_1\ldots a_k)[a_1]\eta_1[a_2]\eta_2\ldots [a_k]\eta_k,$$

Assume the contrary: $\sum \varphi(g)g^{-1} \in X_0$, the leader (c_1, \ldots, c_k) of a function $\varphi(a_1 \ldots a_k)$ on $A_1 \times \ldots \times A_k$ satisfies $c_i \notin B_i$ for all $i = 1, \ldots, k$. Exist $\eta_i \in K^{A_i} \cap X_i$ with outsiders $out(\eta_i) = c_i$. Look at the constant term of the product

$$[1] \left(\sum \varphi(g)g^{-1}\right) \cdot \eta_1 \cdot \eta_2 \cdot \ldots \cdot \eta_k = 0.$$

It equals

$$\sum_{\mathsf{a}_i \in \mathsf{A}_i} \varphi(\mathsf{a}_1 \dots \mathsf{a}_k)[\mathsf{a}_1] \eta_1[\mathsf{a}_2] \eta_2 \dots [\mathsf{a}_k] \eta_k,$$

and by the lexicographic reasoning the onliest non-zero summand is

$$\varphi(c_1 \ldots c_k)[c_1]\eta_1[c_2]\eta_2 \ldots [c_k]\eta_k \neq 0,$$

a contradiction.

Let p be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian p-group with n generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of p.

Let p be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian p-group with n generators g_1, \ldots, g_n, g_i generates C_{N_i} , each N_i is a power of p. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let p be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian p-group with n generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of p. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$. Fix positive parameters $\lambda_1, \ldots, \lambda_n$. Consider the subspace generated by monomials for which

$$\sum_{j=1}^n \lambda_j \left(\frac{m_j}{N_j - 1} - \frac{1}{3} \right) > 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Let *p* be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian *p*-group with *n* generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of *p*. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$. Fix positive parameters $\lambda_1, \ldots, \lambda_n$. Consider the subspace generated by monomials for which

$$\sum_{j=1}^n \lambda_j \left(\frac{m_j}{N_j - 1} - \frac{1}{3} \right) > 0$$

Any product $f_1 f_2 f_3$ for $f_i \in X$ has some $1 - g_j$ in a power strictly greater than $N_j - 1$, but $(1 - g_j)^{N_j} = 0$.

Let *p* be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian *p*-group with *n* generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of *p*. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$. Fix positive parameters $\lambda_1, \ldots, \lambda_n$. Consider the subspace generated by monomials for which

$$\sum_{j=1}^n \lambda_j \left(\frac{m_j}{N_j - 1} - \frac{1}{3} \right) > 0$$

Any product $f_1 f_2 f_3$ for $f_i \in X$ has some $1 - g_j$ in a power strictly greater than $N_j - 1$, but $(1 - g_j)^{N_j} = 0$. Chernoff bound:

$$\operatorname{codim} X \leq \prod_{i} \kappa(N_{i}), \ \kappa(N) = \min_{x>0} x^{-(N-1)/3} (1+x+\cdots+x^{N-1}) < N$$

Let *p* be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian *p*-group with *n* generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of *p*. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$. Fix positive parameters $\lambda_1, \ldots, \lambda_n$. Consider the subspace generated by monomials for which

$$\sum_{j=1}^n \lambda_j \left(\frac{m_j}{N_j - 1} - \frac{1}{3} \right) > 0$$

Any product $f_1 f_2 f_3$ for $f_i \in X$ has some $1 - g_j$ in a power strictly greater than $N_j - 1$, but $(1 - g_j)^{N_j} = 0$. Chernoff bound:

$$\operatorname{codim} X \leq \prod_{i} \kappa(N_{i}), \ \kappa(N) = \min_{x>0} x^{-(N-1)/3} (1+x+\cdots+x^{N-1}) < N$$

For C_p^n the same estimate that polynomial method (E. Croot – V. Lev – P. Pach, J. Ellenberg – D. Gijswijt) gives.

Let *p* be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian *p*-group with *n* generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of *p*. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$. Fix positive parameters $\lambda_1, \ldots, \lambda_n$. Consider the subspace generated by monomials for which

$$\sum_{j=1}^n \lambda_j \left(\frac{m_j}{N_j - 1} - \frac{1}{3} \right) > 0$$

Any product $f_1 f_2 f_3$ for $f_i \in X$ has some $1 - g_j$ in a power strictly greater than $N_j - 1$, but $(1 - g_j)^{N_j} = 0$. Chernoff bound:

$$\operatorname{codim} X \leq \prod_{i} \kappa(N_{i}), \ \kappa(N) = \min_{x>0} x^{-(N-1)/3} (1 + x + \dots + x^{N-1}) < N$$

For C_p^n the same estimate that polynomial method (E. Croot – V. Lev – P. Pach, J. Ellenberg – D. Gijswijt) gives. CLP constant for C_4^n equals $\kappa(4)$.

Let *p* be a prime. Let $G = \prod_{i=1}^{n} C_{N_i}$ be a finite Abelian *p*-group with *n* generators g_1, \ldots, g_n , g_i generates C_{N_i} , each N_i is a power of *p*. $\mathbb{F}_p[G]$ is generated by the products $\prod (1 - g_i)^{m_i}$, where $m_i \in \{0, 1, \ldots, N_i - 1\}$. Fix positive parameters $\lambda_1, \ldots, \lambda_n$. Consider the subspace generated by monomials for which

$$\sum_{j=1}^n \lambda_j \left(\frac{m_j}{N_j - 1} - \frac{1}{3} \right) > 0$$

Any product $f_1 f_2 f_3$ for $f_i \in X$ has some $1 - g_j$ in a power strictly greater than $N_j - 1$, but $(1 - g_j)^{N_j} = 0$. Chernoff bound:

$$\operatorname{codim} X \leq \prod_{i} \kappa(N_{i}), \ \kappa(N) = \min_{x>0} x^{-(N-1)/3} (1 + x + \dots + x^{N-1}) < N$$

For C_p^n the same estimate that polynomial method (E. Croot – V. Lev – P. Pach, J. Ellenberg – D. Gijswijt) gives. CLP constant for C_4^n equals $\kappa(4)$. Other proofs for $\prod C_{p^r}$: W. Sawin, E. Naslund (binomials divisibility), D. Speyer (Witt vectors).

$$G = UT(n, \mathbb{F}_p), |G| = p^{n(n-1)/2}.$$

$$G = UT(n, \mathbb{F}_p), |G| = p^{n(n-1)/2}.$$

 $g_{ij} = id + e_{ij}, i < j;$

$$G = UT(n, \mathbb{F}_p), |G| = p^{n(n-1)/2}.$$

 $g_{ij} = id + e_{ij}, i < j;$ each element of G has unique representation

$$g_{n-1,n}^{\alpha_{n-1,n}}g_{n-2,n}^{\alpha_{n-2,n}}\dots g_{1,2}^{\alpha_{1,2}}, 0 \leq \alpha_{i,j} \leq p-1.$$

$$\begin{aligned} G &= UT(n, \mathbb{F}_p), \ |G| = p^{n(n-1)/2}.\\ g_{ij} &= id + e_{ij}, \ i < j; \text{ each element of } G \text{ has unique representation}\\ g_{n-1,n}^{\alpha_{n-2,n}} g_{n-2,n}^{\alpha_{1,2}} \dots g_{1,2}^{\alpha_{1,2}}, 0 \leqslant \alpha_{i,j} \leqslant p-1. \end{aligned}$$

 g_{ij} and g_{kl} commute unless j = k or i = l. In this case we have relations $g_{ij}g_{jl} = g_{jl}g_{ij}g_{il}$. $x_{ij} = g_{ij} - 1$, in $\mathbb{F}_p[G]$ we have $x_{ij}^p = 0$ and $\mathbb{F}_p[G]$ has a basis

$$x_{n-1,n}^{\alpha_{n-1,n}} x_{n-2,n}^{\alpha_{n-2,n}} \dots x_{1,2}^{\alpha_{1,2}}, 0 \leq \alpha_{i,j} \leq p-1$$

$$\begin{aligned} G &= UT(n, \mathbb{F}_p), \ |G| = p^{n(n-1)/2}.\\ g_{ij} &= id + e_{ij}, \ i < j; \ \text{each element of } G \ \text{has unique representation}\\ g_{n-1,n}^{\alpha_{n-2,n}} g_{n-2,n}^{\alpha_{n-2,n}} \dots g_{1,2}^{\alpha_{1,2}}, 0 \leqslant \alpha_{i,j} \leqslant p-1. \end{aligned}$$

 g_{ij} and g_{kl} commute unless j = k or i = l. In this case we have relations $g_{ij}g_{jl} = g_{jl}g_{ij}g_{il}$. $x_{ij} = g_{ij} - 1$, in $\mathbb{F}_p[G]$ we have $x_{ij}^p = 0$ and $\mathbb{F}_p[G]$ has a basis

$$x_{n-1,n}^{\alpha_{n-1,n}}x_{n-2,n}^{\alpha_{n-2,n}}\ldots x_{1,2}^{\alpha_{1,2}}, 0 \leq \alpha_{i,j} \leq p-1.$$

If i < j < l we have $(1 + x_{ij})(1 + x_{jl}) = (1 + x_{jl})(1 + x_{ij})(1 + x_{ij})(1 + x_{il})$, thus $x_{ij}x_{jl} = x_{jl}x_{ij} + x_{il} + x_{ij}x_{il} + x_{jl}x_{il} + x_{jl}x_{ij}x_{il}$.

$$\begin{aligned} G &= UT(n, \mathbb{F}_p), \ |G| = p^{n(n-1)/2}.\\ g_{ij} &= id + e_{ij}, \ i < j; \ \text{each element of } G \ \text{has unique representation}\\ g_{n-1,n}^{\alpha_{n-2,n}} g_{n-2,n}^{\alpha_{n-2,n}} \dots g_{1,2}^{\alpha_{1,2}}, 0 \leqslant \alpha_{i,j} \leqslant p-1. \end{aligned}$$

 g_{ij} and g_{kl} commute unless j = k or i = l. In this case we have relations $g_{ij}g_{jl} = g_{jl}g_{ij}g_{il}$. $x_{ij} = g_{ij} - 1$, in $\mathbb{F}_p[G]$ we have $x_{ij}^p = 0$ and $\mathbb{F}_p[G]$ has a basis

$$x_{n-1,n}^{\alpha_{n-1,n}}x_{n-2,n}^{\alpha_{n-2,n}}\ldots x_{1,2}^{\alpha_{1,2}}, 0 \leq \alpha_{i,j} \leq p-1.$$

If i < j < l we have $(1 + x_{ij})(1 + x_{jl}) = (1 + x_{jl})(1 + x_{ij})(1 + x_{ij})(1 + x_{il})$, thus $x_{ij}x_{jl} = x_{jl}x_{ij} + x_{il} + x_{ij}x_{il} + x_{jl}x_{il} + x_{jl}x_{ij}x_{il}$.

$$\begin{aligned} G &= UT(n, \mathbb{F}_p), \ |G| = p^{n(n-1)/2}.\\ g_{ij} &= id + e_{ij}, \ i < j; \text{ each element of } G \text{ has unique representation}\\ g_{n-1,n}^{\alpha_{n-2,n}} g_{n-2,n}^{\alpha_{n-2,n}} \dots g_{1,2}^{\alpha_{1,2}}, 0 \leqslant \alpha_{i,j} \leqslant p-1. \end{aligned}$$

 g_{ij} and g_{kl} commute unless j = k or i = l. In this case we have relations $g_{ij}g_{jl} = g_{jl}g_{ij}g_{il}$. $x_{ij} = g_{ij} - 1$, in $\mathbb{F}_p[G]$ we have $x_{ij}^p = 0$ and $\mathbb{F}_p[G]$ has a basis

$$x_{n-1,n}^{\alpha_{n-1,n}} x_{n-2,n}^{\alpha_{n-2,n}} \dots x_{1,2}^{\alpha_{1,2}}, 0 \leq \alpha_{i,j} \leq p-1.$$

If i < j < l we have $(1 + x_{ij})(1 + x_{jl}) = (1 + x_{jl})(1 + x_{ij})(1 + x_{il})$, thus $x_{ij}x_{jl} = x_{jl}x_{ij} + x_{il} + x_{ij}x_{il} + x_{jl}x_{ij}x_{il}$. Define a degree of any word in alphabet $\{x_{ij}\}$'s as a sum of (j - i) over all used letters.

$$\begin{aligned} G &= UT(n, \mathbb{F}_p), \ |G| = p^{n(n-1)/2}.\\ g_{ij} &= id + e_{ij}, \ i < j; \text{ each element of } G \text{ has unique representation}\\ g_{n-1,n}^{\alpha_{n-2,n}} g_{n-2,n}^{\alpha_{n-2,n}} \dots g_{1,2}^{\alpha_{1,2}}, 0 \leqslant \alpha_{i,j} \leqslant p-1. \end{aligned}$$

 g_{ij} and g_{kl} commute unless j = k or i = l. In this case we have relations $g_{ij}g_{jl} = g_{jl}g_{ij}g_{il}$. $x_{ij} = g_{ij} - 1$, in $\mathbb{F}_p[G]$ we have $x_{ij}^p = 0$ and $\mathbb{F}_p[G]$ has a basis

$$x_{n-1,n}^{\alpha_{n-1,n}} x_{n-2,n}^{\alpha_{n-2,n}} \dots x_{1,2}^{\alpha_{1,2}}, 0 \leq \alpha_{i,j} \leq p-1.$$

If i < j < l we have $(1 + x_{ij})(1 + x_{jl}) = (1 + x_{jl})(1 + x_{ij})(1 + x_{il})$, thus $x_{ij}x_{jl} = x_{jl}x_{ij} + x_{il} + x_{ij}x_{il} + x_{jl}x_{il}x_{il}$. Define a degree of any word in alphabet $\{x_{ij}\}$'s as a sum of (j - i) over all used letters. X: span of reduced monomials of degree strictly greater than $(p - 1)(\sum_{i < j} (j - i))/3$.