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Progressions

G is a group,nontrivial progression in G : ac = b2, a, b, c not all
equal
(warning: ba−1 = cb−1 is a different condition)
Maximal size X of a progression-free set in a given finite group G?
G = Cn (cyclic group of order n): K. F. Roth 1953 — X = o(n),

(K. O’Bryant 2011) n2−
√

8 log2 n 6 X 6 C
(log log n)4

log n
n (T. Bloom 2016)

G = Cn
p : X = o(|G |1−δ), p = 4: E. Croot, V. Lev, P. Pach (2016),

even without semi-trivial progressions a · a = b2

p odd prime: J. Ellenberg, D. Gijswijt (2016, soon after)
Proof ingredients: polynomial method (in spirit of Alon’s
Combinatorial Nullstellensatz),linear algebraic dimension reasoning
and law of large numbers
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Multiplicative matchings

The set of ordered triples (xi , yi , zi ): xiyjzk = 1⇔ i = j = k
Progression-free set A: (a, a, a−2).
X (max progession-free set) 6 Y (max multiplicative matching)
still Y = o(|G |1−δ) for G = Cn

p

proof: literally the same
important feature: sharp value of δ for fixed p and large n (R.
Kleinberg, W. Sawin, D. Speyer; arbitrary p: finished by S. Norin
and L. Pebody)
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Ellenberg’s refinement

For all subsets A,B ⊂ G , there are A1 ⊂ A, B1 ⊂ B:
AB ⊂ A1B ∪ AB1 and |A1|+ |B1| 6 Z .
Max multiplicative matching {(xi , yi , zi )} : Y 6 Z
A = {xi}, B = {yj},for any k : z−1k = xkyk = xiyj for xi ∈ A1 or
yj ∈ B1.Thus xk ∈ A1 or yk ∈ B1. Z = |A1|+ |B1| > Y
Ellenberg’s theorem (2016): Z still does not exceed the discussed
bound for X and Y
Proof: the same polynomial and probabilistic parts, but more
involved linear algebraic lemma by R. Meshulam (1985)
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Group rings

G is a group, K is a field

K [G ] =
{
z =

∑
cg · g : cg ∈ K , g ∈ G

}
multiplication: natural (convolution of functions on G )

supp(z) = {g : cg 6= 0}

supp(z1z2) ⊂ supp(z1) · supp(z2)

G linearly acts on C[G ] by multiplications
C[G ] ∼ representation theory of G
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Nilpotent subspaces

X0, . . . ,Xk — K -linear subspaces of K [G ], X0 · X1 · . . . · Xk = 0
ti = codimXi

Theorem. A1, . . . ,Ak — arbitrary subsets of G . Then there exist
subsets Bi ⊂ Ai , i = 1, . . . , k , and C ⊂ G such that |C | 6 t0,
|Bi | 6 ti for all i = 1, . . . , k , and

A1A2·. . .·Ak ⊂ C∪B1A2·. . .·Ak∪A1B2·. . .·Ak∪. . .∪A1A2·. . .·Ak−1Bk .
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Leaders and outsiders

A — linearly ordered, |A| = d , like A = {1, 2, . . . , d}
z : A→ K a function, not identical 0
the leader `(z) and the outsider out(z) are the minimal, corr.
maximal, a ∈ A such that z(a) 6= 0.
Key lemma. Let W ⊂ KA be a linear subspace. Then there are
exactly dimW different leaders of non-zero elements of W (and,
of course, as many different outsiders)
Proof. Gauss elimination. Find a base y1, . . . , ym in W with
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Construction of small sets C and Bi ’s

W : space of functions f on A1 × A2 × . . .× Ak of the form
f (a1, . . . , ak) = ϕ(a1 . . . ak), ϕ : G → K
Let Ai be linearly ordered, then A1 × . . .× Ak is lex-ordered
Consider the leaders of non-zero elements of W . What we actually
show: all but at most t0 of these leaders may be covered by the
sets B1 × A2 × . . .× Ak , A1 × B2 × . . .× Bk , . . . ,
A1 × A2 × . . .× Ak−1 × Bk for certain subsets Bi ⊂ Ai , |Bi | 6 ti .
W0 ⊂W :

∑
ϕ(g)g−1 ∈ X0. dimW /W0 6 t0, thus by Key

Lemma all but at most t0 leaders of the elements of W are the
leaders of the elements of W0.
KAi ⊂ K [G ]: span of Ai , the outsiders of KAi ∩ Xi take all but at
most ti values, let Bi ⊂ Ai consist of non-outsiders of the elements
from KAi ∩ Xi
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Proof

Assume the contrary:
∑
ϕ(g)g−1 ∈ X0, the leader (c1, . . . , ck) of

a function ϕ(a1 . . . ak) on A1 × . . .× Ak satisfies ci /∈ Bi for all
i = 1, . . . , k . Exist ηi ∈ KAi ∩ Xi with outsiders out(ηi ) = ci . Look
at the constant term of the product

[1]
(∑

ϕ(g)g−1
)
· η1 · η2 · . . . · ηk = 0.

It equals ∑
ai∈Ai

ϕ(a1 . . . ak)[a1]η1[a2]η2 . . . [ak ]ηk ,

and by the lexicographic reasoning the onliest non-zero summand is

ϕ(c1 . . . ck)[c1]η1[c2]η2 . . . [ck ]ηk 6= 0,

a contradiction.
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Example 1: Abelian p-groups

Let p be a prime. Let G =
∏n

i=1 CNi
be a finite Abelian p-group

with n generators g1, . . . , gn, gi generates CNi
, each Ni is a power

of p. Fp[G ] is generated by the products
∏

(1− gi )
mi , where

mi ∈ {0, 1, . . . ,Ni − 1}.Fix positive parameters λ1, . . . , λn.
Consider the subspace generated by monomials for which

n∑
j=1

λj

(
mj

Nj − 1
− 1

3

)
> 0

Any product f1f2f3 for fi ∈ X has some 1− gj in a power strictly
greater than Nj − 1, but (1− gj)

Nj = 0. Chernoff bound:

codimX 6
∏
i

κ(Ni ), κ(N) = min
x>0

x−(N−1)/3(1+x+· · ·+xN−1) < N

For Cn
p the same estimate that polynomial method (E. Croot – V.

Lev – P. Pach, J. Ellenberg – D. Gijswijt) gives. CLP constant for
Cn
4 equals κ(4). Other proofs for

∏
Cpr : W. Sawin, E. Naslund

(binomials divisibility), D. Speyer (Witt vectors).
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Example 2: Unitriangular matrices

G = UT (n,Fp), |G | = pn(n−1)/2.
gij = id + eij , i < j ; each element of G has unique representation

g
αn−1,n

n−1,n g
αn−2,n

n−2,n . . . g
α1,2

1,2 , 0 6 αi ,j 6 p − 1.

gij and gkl commute unless j = k or i = l . In this case we have
relations gijgjl = gjlgijgil . xij = gij − 1, in Fp[G ] we have xpij = 0
and Fp[G ] has a basis

x
αn−1,n

n−1,n x
αn−2,n

n−2,n . . . x
α1,2

1,2 , 0 6 αi ,j 6 p − 1.

If i < j < l we have (1 + xij)(1 + xjl) = (1 + xjl)(1 + xij)(1 + xil),
thus xijxjl = xjlxij + xil + xijxil + xjlxil + xjlxijxil . Define a degree of
any word in alphabet {xij}’s as a sum of (j − i) over all used
letters. X : span of reduced monomials of degree strictly greater
than (p − 1)(

∑
i<j(j − i))/3.
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