Small sumsets in \mathbb{R}

Anne de Roton

Institut Élie Cartan de Lorraine Université de Lorraine

Vilnius, july 2017

Vilnius, july 2017

Questions:

- How small can *A* + *B* be compared to *A* and *B* ?
- If *A* + *B* is close to the smallest possible, what can be said about the structures of *A*, *B* and *A* + *B* ?

Questions:

- How small can *A* + *B* be compared to *A* and *B* ?
- If *A* + *B* is close to the smallest possible, what can be said about the structures of *A*, *B* and *A* + *B* ?

Questions:

• How small can A + B be compared to A and B?

• If *A* + *B* is close to the smallest possible, what can be said about the structures of *A*, *B* and *A* + *B* ?

Questions:

- How small can *A* + *B* be compared to *A* and *B* ?
- If *A* + *B* is close to the smallest possible, what can be said about the structures of *A*, *B* and *A* + *B* ?

Questions:

- How small can *A* + *B* be compared to *A* and *B* ?
- If *A* + *B* is close to the smallest possible, what can be said about the structures of *A*, *B* and *A* + *B* ?

Questions:

- How small can *A* + *B* be compared to *A* and *B* ?
- If *A* + *B* is close to the smallest possible, what can be said about the structures of *A*, *B* and *A* + *B* ?

 $\lambda(\mathbf{A} + \mathbf{B}) \geq \lambda(\mathbf{A}) + \lambda(\mathbf{B})$

and equality holds if and only if A and B each have full measure in an interval.

Thm (Raikov, 1939)

If $A, B \subset \mathbb{T}$, then $\mu(A + B) \ge \min(\mu(A) + \mu(B), 1)$.

Thm (Ruzsa, 1991)

Let $A, B \subset \mathbb{R}$ bounded. If diam $(A) = \sup A - \inf A$ and $\lambda(B) \leq \lambda(A)$ then $\lambda(A + B) \geq \min(\lambda(A) + 2\lambda(B), \operatorname{diam}(A) + \lambda(B))$.

$$\lambda(A + B) \ge \lambda(A) + \lambda(B)$$

and equality holds if and only if A and B each have full measure in an interval.

Thm (Raikov, 1939) If $A, B \subset \mathbb{T}$, then $\mu(A + B) \ge \min(\mu(A) + \mu(B), 1)$.

Thm (Ruzsa, 1991)

Let $A, B \subset \mathbb{R}$ bounded. If diam $(A) = \sup A - \inf A$ and $\lambda(B) \leq \lambda(A)$ then $\lambda(A + B) \geq \min(\lambda(A) + 2\lambda(B), \operatorname{diam}(A) + \lambda(B))$.

$$\lambda(A+B) \geq \lambda(A) + \lambda(B)$$

and equality holds if and only if A and B each have full measure in an interval.

Thm (Raikov, 1939) If $A, B \subset \mathbb{T}$, then $\mu(A + B) \ge \min(\mu(A) + \mu(B), 1)$.

Thm (Ruzsa, 1991)

Let $A, B \subset \mathbb{R}$ bounded. If diam $(A) = \sup A - \inf A$ and $\lambda(B) \leq \lambda(A)$ then $\lambda(A+B) \geq \min(\lambda(A) + 2\lambda(B), \operatorname{diam}(A) + \lambda(B))$.

 $\lambda(\mathbf{A} + \mathbf{B}) \geq \lambda(\mathbf{A}) + \lambda(\mathbf{B})$

and equality holds if and only if A and B each have full measure in an interval.

Thm (Raikov, 1939) If $A, B \subset \mathbb{T}$, then $\mu(A + B) \ge \min(\mu(A) + \mu(B), 1)$.

Thm (Ruzsa, 1991)

Let $A, B \subset \mathbb{R}$ bounded. If diam $(A) = \sup A - \inf A$ and $\lambda(B) \leq \lambda(A)$ then $\lambda(A + B) \geq \min(\lambda(A) + 2\lambda(B), \operatorname{diam}(A) + \lambda(B))$.

$$\lambda(A+B) \geq \lambda(A) + \lambda(B)$$

and equality holds if and only if A and B each have full measure in an interval.

Thm (Raikov, 1939) If $A, B \subset T$, then $\mu(A + B) \ge \min(\mu(A) + \mu(B), 1)$.

Thm (Ruzsa, 1991)

Let $A, B \subset \mathbb{R}$ bounded. If diam $(A) = \sup A - \inf A$ and $\lambda(B) \leq \lambda(A)$ then $\lambda(A + B) \geq \min(\lambda(A) + 2\lambda(B), \operatorname{diam}(A) + \lambda(B))$.

Assume A closed, $\min A = 0$ and $\max(A) = 1$ and define

$$S_1 = \{x \in [0, 1] : x \in A + A \text{ or } x + 1 \in A + A\};$$

 $S_2 = \{x \in [0, 1] : x \in A + A \text{ and } x + 1 \in A + A\}.$

We have $\lambda(A + A) = \mu(S_1) + \mu(S_2)$.

• Since $0, 1 \in A$, we have $A \subset S_2$, thus $\mu(S_2) \ge \lambda(A)$;

• By Raikov $\mu(S_1) = \mu(A + A \mod 1) \ge \min(1, 2\mu(A \mod 1)).$

This gives

$$\lambda(A+A) \geq \lambda(A) + \min(1, 2\lambda(A)),$$

and proves Ruzsa's thm.

Assume A closed, $\min A = 0$ and $\max(A) = 1$ and define

$$S_1 = \{x \in [0, 1] : x \in A + A \text{ or } x + 1 \in A + A\};\ S_2 = \{x \in [0, 1] : x \in A + A \text{ and } x + 1 \in A + A\}.$$

We have $\lambda(A + A) = \mu(S_1) + \mu(S_2)$.

• Since $0, 1 \in A$, we have $A \subset S_2$, thus $\mu(S_2) \ge \lambda(A)$;

• By Raikov $\mu(S_1) = \mu(A + A \mod 1) \ge \min(1, 2\mu(A \mod 1)).$

This gives

$$\lambda(A+A) \geq \lambda(A) + \min(1, 2\lambda(A)),$$

and proves Ruzsa's thm.

Assume A closed, $\min A = 0$ and $\max(A) = 1$ and define

$$S_1 = \{x \in [0, 1] : x \in A + A \text{ or } x + 1 \in A + A\};\ S_2 = \{x \in [0, 1] : x \in A + A \text{ and } x + 1 \in A + A\}.$$

We have $\lambda(A + A) = \mu(S_1) + \mu(S_2)$.

• Since 0, 1 \in A, we have $A \subset S_2$, thus $\mu(S_2) \ge \lambda(A)$;

• By Raikov $\mu(S_1) = \mu(A + A \mod 1) \ge \min(1, 2\mu(A \mod 1)).$

This gives

 $\lambda(A+A) \geq \lambda(A) + \min(1, 2\lambda(A))$

and proves Ruzsa's thm.

Anne de Roton (IECL)

Assume A closed, $\min A = 0$ and $\max(A) = 1$ and define

$$S_1 = \{x \in [0, 1] : x \in A + A \text{ or } x + 1 \in A + A\};\ S_2 = \{x \in [0, 1] : x \in A + A \text{ and } x + 1 \in A + A\}.$$

We have $\lambda(A + A) = \mu(S_1) + \mu(S_2)$.

• Since $0, 1 \in A$, we have $A \subset S_2$, thus $\mu(S_2) \ge \lambda(A)$;

• By Raikov $\mu(S_1) = \mu(A + A \mod 1) \ge \min(1, 2\mu(A \mod 1)).$

This gives

$$\lambda(A+A) \geq \lambda(A) + \min(1, 2\lambda(A)),$$

and proves Ruzsa's thm.

Assume A closed, $\min A = 0$ and $\max(A) = 1$ and define

$$S_1 = \{x \in [0, 1] : x \in A + A \text{ or } x + 1 \in A + A\};\ S_2 = \{x \in [0, 1] : x \in A + A \text{ and } x + 1 \in A + A\}.$$

We have $\lambda(A + A) = \mu(S_1) + \mu(S_2)$.

Since 0, 1 ∈ A, we have A ⊂ S₂, thus μ(S₂) ≥ λ(A);

This gives

$$\lambda(A + A) \ge \lambda(A) + \min(1, 2\lambda(A)),$$

and proves Ruzsa's thm.

Anne de Roton (IECL)

Let $A, B \subset \mathbb{R}$ be bounded. If either

- i) $\lambda(A+B) < \lambda(A) + \lambda(B) + \min(\lambda(A), \lambda(B));$
- ii) or diam(B) \leq diam(A) and $\lambda(A + B) < \lambda(A) + 2\lambda(B)$;

then

- diam $(A) \leq \lambda(A+B) \lambda(B)$,
- $iam(B) \leq \lambda(A+B) \lambda(A),$
- **3** and there exists an interval $I \subset A + B$ of length $\ell(I) \ge \lambda(A) + \lambda(B)$.

Discrete analogues by Freiman, Lev-Smeliansky, Stanchescu, Bardaji-Grynkiewicz.

Proof in the case A = B:

Assume $\lambda(A + A) < 3\lambda(A)$, A closed, bounded and min A = 0, max A = D. By Ruzsa's inequality, $D \le \lambda(A + A) - \lambda(A)$ and $\Delta = 2\lambda(A) - D > 0$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Let $A,B\subset \mathbb{R}$ be bounded. If either

i) $\lambda(A+B) < \lambda(A) + \lambda(B) + \min(\lambda(A), \lambda(B));$

ii) or diam(B) \leq diam(A) and $\lambda(A + B) < \lambda(A) + 2\lambda(B)$;

then

• diam
$$(A) \leq \lambda(A+B) - \lambda(B)$$
,

2 diam
$$(B) \leq \lambda(A+B) - \lambda(A)$$
,

③ and there exists an interval $I \subset A + B$ of length $\ell(I) \ge \lambda(A) + \lambda(B)$.

Discrete analogues by Freiman, Lev-Smeliansky, Stanchescu, Bardaji-Grynkiewicz.

Proof in the case A = B: Assume $\lambda(A + A) < 3\lambda(A)$, A closed, bounded and min A = 0, max A = D. By Ruzsa's inequality, $D \le \lambda(A + A) - \lambda(A)$ and $\Delta = 2\lambda(A) - D > 0$.

Let $A,B\subset \mathbb{R}$ be bounded. If either

i) $\lambda(A+B) < \lambda(A) + \lambda(B) + \min(\lambda(A), \lambda(B));$

ii) or diam(B) \leq diam(A) and $\lambda(A + B) < \lambda(A) + 2\lambda(B)$;

then

• diam
$$(A) \leq \lambda(A+B) - \lambda(B)$$
,

(2)
$$\operatorname{diam}(B) \leq \lambda(A+B) - \lambda(A)$$
,

③ and there exists an interval $I \subset A + B$ of length $\ell(I) \ge \lambda(A) + \lambda(B)$.

Discrete analogues by Freiman, Lev-Smeliansky, Stanchescu, Bardaji-Grynkiewicz.

Proof in the case A = B:

Assume $\lambda(A + A) < 3\lambda(A)$, A closed, bounded and min A = 0, max A = D. By Ruzsa's inequality, $D \le \lambda(A + A) - \lambda(A)$ and $\Delta = 2\lambda(A) - D > 0$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Let $A,B\subset \mathbb{R}$ be bounded. If either

i) $\lambda(A+B) < \lambda(A) + \lambda(B) + \min(\lambda(A), \lambda(B));$

ii) or diam(B) \leq diam(A) and $\lambda(A + B) < \lambda(A) + 2\lambda(B)$;

then

• diam
$$(A) \leq \lambda(A+B) - \lambda(B)$$
,

(2)
$$\operatorname{diam}(B) \leq \lambda(A+B) - \lambda(A)$$
,

③ and there exists an interval $I \subset A + B$ of length $\ell(I) \ge \lambda(A) + \lambda(B)$.

Discrete analogues by Freiman, Lev-Smeliansky, Stanchescu, Bardaji-Grynkiewicz.

Proof in the case A = B:

Assume $\lambda(A + A) < 3\lambda(A)$, A closed, bounded and min A = 0, max A = D. By Ruzsa's inequality, $D \le \lambda(A + A) - \lambda(A)$ and $\Delta = 2\lambda(A) - D > 0$.

Let $A,B\subset \mathbb{R}$ be bounded. If either

i) $\lambda(A+B) < \lambda(A) + \lambda(B) + \min(\lambda(A), \lambda(B));$

ii) or diam(B) \leq diam(A) and $\lambda(A + B) < \lambda(A) + 2\lambda(B)$;

then

• diam
$$(A) \leq \lambda(A+B) - \lambda(B)$$
,

(2)
$$\operatorname{diam}(B) \leq \lambda(A+B) - \lambda(A)$$
,

③ and there exists an interval $I \subset A + B$ of length $\ell(I) \ge \lambda(A) + \lambda(B)$.

Discrete analogues by Freiman, Lev-Smeliansky, Stanchescu, Bardaji-Grynkiewicz.

Proof in the case A = B:

Assume $\lambda(A + A) < 3\lambda(A)$, A closed, bounded and min A = 0, max A = D. By Ruzsa's inequality, $D \le \lambda(A + A) - \lambda(A)$ and $\Delta = 2\lambda(A) - D > 0$.

Assume A bounded and $\inf A = 0$.

- If $x \ge 0$ and $x \notin A + A$ then $2\lambda(A \cap [0, x]) \le x$.
- 3 If $x \leq 2D$ and $x \notin A + A$ then $2\lambda(A \cap [x D, D]) \leq 2D x$.

$$0 \quad y \in A \qquad x - y \notin A \quad x \notin A + A$$

We define $g(x) = 2\lambda(A \cap [0, x])$. We have

- $g(x) > x \Rightarrow x \in A + A$,
- $g(x) < x + \Delta \Rightarrow x + D \in A + A$.

Assume A bounded and $\inf A = 0$.

- If $x \ge 0$ and $x \notin A + A$ then $2\lambda(A \cap [0, x]) \le x$.
- 3 If $x \leq 2D$ and $x \notin A + A$ then $2\lambda(A \cap [x D, D]) \leq 2D x$.

$$0 \quad y \in A \qquad x - y \notin A \quad x \notin A + A$$

We define $g(x) = 2\lambda(A \cap [0, x])$. We have

- $g(x) > x \Rightarrow x \in A + A$,
- $g(x) < x + \Delta \Rightarrow x + D \in A + A$.

Assume A bounded and $\inf A = 0$.

- If $x \ge 0$ and $x \notin A + A$ then $2\lambda(A \cap [0, x]) \le x$.
- ② If $x \le 2D$ and $x \notin A + A$ then $2\lambda(A \cap [x D, D]) \le 2D x$.

$$0 \quad y \in A \qquad x - y \notin A \quad x \notin A + A$$

We define $g(x) = 2\lambda(A \cap [0, x])$.

We have

- $g(x) > x \Rightarrow x \in A + A$,
- $g(x) < x + \Delta \Rightarrow x + D \in A + A$.

Vilnius, july 2017

6/10

Assume A bounded and $\inf A = 0$.

- If $x \ge 0$ and $x \notin A + A$ then $2\lambda(A \cap [0, x]) \le x$.
- 3 If $x \leq 2D$ and $x \notin A + A$ then $2\lambda(A \cap [x D, D]) \leq 2D x$.

$$0 \quad y \in A \qquad x - y \notin A \quad x \notin A + A$$

We define $g(x) = 2\lambda(A \cap [0, x])$. We have

•
$$g(x) > x \Rightarrow x \in A + A$$
,

•
$$g(x) < x + \Delta \Rightarrow x + D \in A + A$$
.

Anne de Roton (IECL)

Anne de Roton (IECL)

Anne de Roton (IECL)

Anne de Roton (IECL)

End of the proof : structure of A + A

 $\lambda(\mathbf{A} + \mathbf{A}) = \mathbf{D} + \lambda(\mathbf{A}) + \lambda(\mathbf{S}_2 \cap \mathbf{A}^c)$

If any down crossing, we have $\lambda(S_2 \cap A^c) \ge \Delta$, thus

$$\lambda(\mathbf{A} + \mathbf{A}) \geq \mathbf{D} + \lambda(\mathbf{A}) + \Delta = \mathbf{3}\lambda(\mathbf{A}).$$

Anne de Roton (IECL)

End of the proof : structure of A + A

 $\lambda(\mathbf{A} + \mathbf{A}) = \mathbf{D} + \lambda(\mathbf{A}) + \lambda(\mathbf{S}_2 \cap \mathbf{A}^c)$ If any down crossing, we have $\lambda(S_2 \cap A^c) \ge \Delta$, thus $\lambda(A+A) \geq D + \lambda(A) + \Delta = 3\lambda(A).$

Anne de Roton (IECL)

Thm (Candela, dR, 2017)

If $A \subset \mathbb{T}$ satisfy $\mu(A + A) < \min((2 + 10^{-4})\mu(A); \frac{1}{2} + \mu(A))$, then $\exists I, K \subset \mathbb{T}$ intervals, $\exists n \ge 1$ such that $n \cdot A \subset I, K \subset n \cdot (A + A)$ and $\mu(I) \le \mu(A + A) - \mu(A), \mu(K) \ge 2\mu(A)$.

Thm (Bilu, 1998)

There exists c > 0 such that for any $A \subset \mathbb{T}$ satisfying $\mu(A) \leq c$ and $\mu(A + A) < \min(1, 3\mu(A))$, there exist a positive integer n and an interval I of length $\ell(I) \leq \mu(A + A) - \mu(A)$ such that $n \cdot A \subset I$.

イロト イヨト イヨト

Thm (Candela, dR, 2017)

If $A \subset \mathbb{T}$ satisfy $\mu(A + A) < \min((2 + 10^{-4})\mu(A); \frac{1}{2} + \mu(A))$, then $\exists I, K \subset \mathbb{T}$ intervals, $\exists n \ge 1$ such that $n \cdot A \subset I, K \subset n \cdot (A + A)$ and $\mu(I) \le \mu(A + A) - \mu(A), \mu(K) \ge 2\mu(A)$.

Thm (Bilu, 1998)

There exists c > 0 such that for any $A \subset \mathbb{T}$ satisfying $\mu(A) \leq c$ and $\mu(A + A) < \min(1, 3\mu(A))$, there exist a positive integer n and an interval I of length $\ell(I) \leq \mu(A + A) - \mu(A)$ such that $n \cdot A \subset I$.

<u>Vilni</u>us, july 2017

9/10

Thm (Eberhard, Green, Manners, 2014)

If $A \subset [0, 1]$ is an open set with $\lambda(A + A) \leq 4\lambda(A) - \delta$ then there is an interval I of length $\ell(I) \gg_{\delta} 1$ such that $\lambda(A \cap I) \geq (\frac{1}{2} + \frac{1}{7}\delta)\lambda(I)$.

Thm (Candela, dR, 2017)

Let $A \subset [0, 1]$ satisfy $\lambda(A + A) \leq (3 + \varepsilon)\lambda(A)$ with $\varepsilon \leq 10^{-4}$. Then $A \subset I$ with I an interval of \mathbb{T} of length at most $(1 + \varepsilon)\lambda(A)$.

Corollary

If $A \subset [0,1]$ is a closed set with $\lambda(A + A) \leq \min(4\lambda(A) - \delta, \frac{1}{4} + \frac{\delta}{2})$ and either $\lambda(A) < cD_A$ or $\delta > (1 - 10^{-4})\lambda(A)$, then there is an interval I of length $\ell(I) \geq \min(\delta^2, \delta/4)$ such that $\lambda(A \cap I) \geq (\frac{1}{2} + \frac{1}{4}\delta)\lambda(I)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Thm (Eberhard, Green, Manners, 2014)

If $A \subset [0, 1]$ is an open set with $\lambda(A + A) \leq 4\lambda(A) - \delta$ then there is an interval I of length $\ell(I) \gg_{\delta} 1$ such that $\lambda(A \cap I) \geq (\frac{1}{2} + \frac{1}{7}\delta)\lambda(I)$.

Thm (Candela, dR, 2017)

Let $A \subset [0, 1]$ satisfy $\lambda(A + A) \leq (3 + \varepsilon)\lambda(A)$ with $\varepsilon \leq 10^{-4}$. Then $A \subset I$ with I an interval of \mathbb{T} of length at most $(1 + \varepsilon)\lambda(A)$.

Corollary

If $A \subset [0,1]$ is a closed set with $\lambda(A + A) \leq \min(4\lambda(A) - \delta, \frac{1}{4} + \frac{\delta}{2})$ and either $\lambda(A) < cD_A$ or $\delta > (1 - 10^{-4})\lambda(A)$, then there is an interval I of length $\ell(I) \geq \min(\delta^2, \delta/4)$ such that $\lambda(A \cap I) \geq (\frac{1}{2} + \frac{1}{4}\delta)\lambda(I)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Thm (Eberhard, Green, Manners, 2014)

If $A \subset [0, 1]$ is an open set with $\lambda(A + A) \leq 4\lambda(A) - \delta$ then there is an interval I of length $\ell(I) \gg_{\delta} 1$ such that $\lambda(A \cap I) \geq (\frac{1}{2} + \frac{1}{7}\delta)\lambda(I)$.

Thm (Candela, dR, 2017)

Let $A \subset [0, 1]$ satisfy $\lambda(A + A) \leq (3 + \varepsilon)\lambda(A)$ with $\varepsilon \leq 10^{-4}$. Then $A \subset I$ with I an interval of \mathbb{T} of length at most $(1 + \varepsilon)\lambda(A)$.

Corollary

If $A \subset [0, 1]$ is a closed set with $\lambda(A + A) \leq \min(4\lambda(A) - \delta, \frac{1}{4} + \frac{\delta}{2})$ and either $\lambda(A) < cD_A$ or $\delta > (1 - 10^{-4})\lambda(A)$, then there is an interval I of length $\ell(I) \geq \min(\delta^2, \delta/4)$ such that $\lambda(A \cap I) \geq (\frac{1}{2} + \frac{1}{4}\delta)\lambda(I)$.