The Erdős-Hajnal problem on colorings of hypergraphs, its on-line generalizations and related questions

Dmitry Shabanov
(Lomonosov Moscow State University, MIPT)

joint work with Alina Khuzieva and Polina Svyatokum

July 17, Vilnius Conference in Combinatorics and Number Theory, Vilnius, 2017
Definitions

• A hypergraph \(H = (V, E) \) is a vertex set \(V \) and a family of subsets \(E \subseteq 2^V \) whose elements are called the edges of the hypergraph.

• A hypergraph \(H = (V, E) \) is said to be \(k \)-uniform if every edge consists of exactly \(k \) vertices.

• So, \(2 \)-uniform hypergraph is just a usual graph.

• Example, a hypergraph of arithmetic progressions:
 • \(V = \{1, \ldots, n\} \),
 • \(E \) is a set of all AP-\(k \), all arithmetic progressions of length \(k \) in \(V \), i.e.
 \[E = \{(1,2, \ldots, k), (2,3, \ldots, k + 1), \ldots\}. \]
Definitions

• Let $H = (V, E)$ be a hypergraph. A vertex coloring is called proper for H if there is no monochromatic edges in this coloring.

• A hypergraph is said to be r-colorable if there is a proper coloring with r colors for it.

• The chromatic number of the hypergraph H, denoted by $\chi(H)$, is the minimum number of colors required for a proper coloring.

• Example, Petersen graph

 It has 10 vertices, 15 edges,
 it is triangle-free,
 chromatic number equals 3.
Extremal problem

Property B problem (P. Erdős, A. Hajnal, 1961)

What is the minimum possible number of edges in a k-uniform hypergraph with chromatic number greater than two?

$$m(k) = \min \{ |E(H)|: \chi(H) > 2, H \text{ is } k-\text{uniform} \}.$$

Natural generalization of the problem:

$$m(k, r) = \min \{ |E(H)|: \chi(H) > r, H \text{ is } k-\text{uniform} \}.$$
Exact results

- $m(2) = 3$ (triangle).
- $m(2, r) = \binom{r+1}{2}$ (a complete graph on $r + 1$ vertices).
- $m(3) = 7$
- **Fano plane**
 - It is a 3-uniform 3-regular hypergraph on 7 vertices.
 - It has 7 edges and chromatic number equal to 3.
- $m(4) = 23$ (computer search)

What about asymptotic behavior?
Erdős-Hajnal problem

Simple bound

\[m(k) \leq \binom{2k - 1}{k} \sim \frac{4^k}{2\sqrt{\pi k}}. \]

Best upper bound (P. Erdős, 1964): take a random hypergraph

\[m(k) \leq \frac{e \ln 2}{4} k^2 2^k (1 + o(1)). \]

Best lower bound (J. Radhakrishnan, A. Srinivasan, 2000):

\[m(k) \geq (\sqrt{3} - 1) \left(\frac{k}{\ln k} \right)^{1/2} 2^{k-1}. \]

Conjecture (P. Erdős, L. Lovász, 1973)

\[m(k) = \Theta(k 2^k). \]
Erdős-Hajnal problem

What about \(r > 2 \)?

The random hypergraph gives the following upper bound: for any \(k, r \),

\[
m(k, r) \leq \frac{e}{2} k^2 r^k \ln r \left(1 + O \left(\frac{1}{k} \right) \right).
\]

Lower bound (D. Cherkashin, J. Kozik 2014): for any \(k, r \),

\[
m(k, r) \geq c \left(\frac{k}{\ln k} \right)^{r - 1} r^{k - 1}.
\]

These bounds are the best for any fixed \(r \) and growing \(k \).
Case of growing number of colors

What is happening for \(r \gg k \)?

Note that for growing \(r \) and fixed \(k \), the simple bound

\[
m(k, r) \leq \binom{(r - 1)k + 1}{k} = \Theta_k(r^k)
\]

is better than the bound provided by random hypergraph. What is the right order on \(r \)?

Theorem (N. Alon, 1985)

\[
m(k, r) > (k - 1) \left\lfloor \frac{r}{k} \right\rfloor \left\lfloor \frac{k - 1}{k} \frac{r}{k} \right\rfloor^{k-1} r^{k-1},
\]

i.e. for \(r > k, m(k, r) > \Omega(r^k) \).
Case of growing number of colors

Theorem (N. Alon, 1985)

For $r > k$,

$$m(k, r) = O\left(\frac{5}{k^2} (\ln k) \left(\frac{3}{4}\right)^k \binom{(r - 1)k + 1}{k}\right).$$

Theorem (D. Shabanov, 2010)

For $r > k$,

$$m(k, r) = \Omega(k^{1/2}r^k).$$
Recent bounds

Theorem (I. Akolzin, D. Shabanov, 2016)

There exist absolute constants $c_1, c_2 > 0$ such that for any $r > k$,

$$c_1 \frac{k}{\ln k} r^k \leq m(k, r) \leq c_2 k^3 (\ln k) r^k.$$

• The lower bound improves the previous result of 2010 and generalizes the result of Cherkashin and Kozik.

• The upper bound improves the Alon’s bound which has the order $k^2 (\ln k) \left(\frac{3e}{4}\right)^k r^k$.

• It also improves the bound given by the random hypergraph for $k(\ln k) < \ln r$.
Alon's conjecture

Conjecture (N. Alon, 1985)

For every \(k \geq 2 \), there exists a limit

\[
\lim_{r \to \infty} \frac{m(k, r)}{r^k}.
\]

- We do not prove the existence of a limit, but give reasonable (polynomial as functions of \(k \)) bounds for \(\liminf_{r \to \infty} \frac{m(k, r)}{r^k} \) and \(\limsup_{r \to \infty} \frac{m(k, r)}{r^k} \).
Ideas of the proofs

Let $H = (V, E)$ be a hypergraph and let σ be an ordering of its vertex set. The ordered subset of edges (A_1, \ldots, A_r) forms an ordered r-chain with respect to σ if for any $i < j$, $v \in A_i, u \in A_j$ it holds that $\sigma(v) \leq \sigma(u)$ and $|A_i \cap A_{i+1}| = 1, |A_i \cap A_j| = 0$ when $j > i + 1$.

Theorem (A. Pluhár, 2009)

$\chi(H) \leq r$ iff there is an ordering of the vertices of H without ordered r-chains.
Ideas of the proofs

1) Let $H = (V,E)$ be a k-uniform hypergraph with small number of edges.

2) Set $a = \left\lfloor \frac{k-1}{k} r \right\rfloor$, $b = \left\lfloor r/k \right\rfloor$ and take for any vertex $v \in V$ independent random variable X_v with uniform distribution on $[0,1]$.

3) For any edge $A \in E$, define
 \[f(A) = \min_{v \in A} X_v, \quad l(A) = \max_{v \in A} X_v. \]

The edge A is said to be bad if $l(A) - f(A) \leq \frac{1-p}{r}$. Otherwise it is called good.

4) Denote H' for the hypergraph of good edges. We show that with positive probability $\chi(H') \leq a$ and the number of bad edges is less than $(k-1)b$ and they can be made non-monochromatic by using the remained colors.
List chromatic number

- Let $H = (V, E)$ be a hypergraph and let $L = (L(v), v \in V)$ be a set of color lists. It is called a list assignment.
- A list assignment L is said to be r-uniform if $|L(v)| = r$ for any $v \in V$.
- A vertex coloring f corresponds to the list assignment L if $f(v) \in L(v)$ for every $v \in V$ (f is a coloring from the lists).
- A hypergraph H is called r-choosable if for every r-uniform list assignment, there is a proper coloring from the lists.
- The list chromatic number of the hypergraph H, denoted by $\chi_l(H)$, is the minimum r such that H is r-choosable.
- Clearly, $\chi(H) \leq \chi_l(H)$.
List chromatic number

• Example, bipartite graph $K_{3,3}$. Its chromatic number equals 2.

• But its list chromatic number is equal to 3. Indeed, there is a bad 2-uniform list assignment.
Asymptotics for graphs

Theorem (P. Erdős, A. Rubin, H. Taylor, 1980)

1. If $2m < m(k)$ then $\chi_l(K_{m,m}) \leq k$.
2. If $m \geq m(k)$ then $\chi_l(K_{m,m}) > k$.
3. Together with the known bounds for $m(k)$, this implies that

$$\chi_l(K_{m,m}) = \log_2 m - O(\log_2 \log_2 m).$$

Theorem (D. Saxton, A. Thomason, 2012)

Let G be a graph with average degree d. Then

$$\chi_l(G) \geq (1 + o(1))\log_2 d.$$
List on-line chromatic number

• Let $G = (V, E)$ be a graph and let $r \geq 2$ be an integer.

(G, r) - GAME 1.

• Suppose there are two players Lister and Painter. Set $X_0 = \emptyset$.
• In round i Lister picks a vertex subset $V_i \subset V \setminus (X_1 \cup \cdots \cup X_{i-1})$.
• Painter chooses an independent subset $X_i \subset V_i$ (i.e. the vertices of X_i are not adjacent in G) and colors all its vertices with color i.
• After round i the vertices in $X_1 \cup \cdots \cup X_i$ are colored.
• If a vertex v belongs to l sets among V_1, \ldots, V_i then it is said to have l permissible colors after round i.
List on-line chromatic number

• The winning rule is the following:
 – Lister wins if after some round there exists a non-colored vertex with r permissible colors.
 – Painter wins if after some round all the vertices are colored.

• Graph G is said to be list on-line r-colorable if Painter has a winning strategy in (G, r)-game 1.

• The list on-line chromatic number of a graph G, $\chi_{ol}(G)$, is the minimum r such that G is list on-line r-colorable.

• Since during the game Lister constructs the color lists on-line,

\[\chi_l(G) \leq \chi_{ol}(G).\]
Asymptotics for bipartite graphs

Theorem (L. Duraj, G. Gebowski, J. Kozik, 2015)

\[\chi_{ol}(K_{m,m}) = \log_2 m - O(1). \]

- Recall that \(\chi_l(K_{m,m}) = \log_2 m - O(\log_2 \log_2 m). \)

- So, the difference between the list on-line chromatic number and the list chromatic number can be arbitrarily large.

- The key ingredient of the proof is the connection with the on-line version of the Erdős-Hajnal problem.
On-line colorings of hypergraphs

• Let \(n \geq 1, k \geq 2 \) and \(r \geq 2 \) be integers.

\((n, k, r) \) – GAME 2.

• Suppose there are two players Lister and Painter.
• In round \(i \) Lister presents a new vertex \(v_i \) and declares in which edges it is contained (i.e. gives some numbers among \{1, ..., n\}).
• Lister cannot add vertices to the edges that already have \(k \) vertices.
• Painter must immediately assign one of the \(r \) colors to the vertex \(v_i \).
On-line colorings of hypergraphs

- The game ends when all n edges contain exactly k vertices.
 - Painter wins if the obtained r-coloring is proper for the constructed hypergraph.
 - Otherwise Lister wins.

- By analogy with the classical Erdős-Hajnal problem we introduce the value $m_{ol}(k, r)$ which is equal to the minimum n such that Lister has a winning strategy in (n, k, r) – GAME 2.

- Clearly,
 $$m_{ol}(k, r) \leq m(k, r),$$
 because for $n = m(k, r)$ Lister can always construct a non-r-colorable hypergraph.
Known results

<table>
<thead>
<tr>
<th>Theorem (J. Aslam, A. Dhagat, 1993)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{ol}(k, r) \geq r^{k-1}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (L. Duraj, G. Gebowski, J. Kozik, 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{ol}(k, 2) \leq 8 \cdot 2^{k-1}$.</td>
</tr>
</tbody>
</table>

- So, in the case of two colors $m_{ol}(k, 2) = \Theta(2^k)$.
- Recall that $m(k, 2) = m(k) = \Omega\left(\frac{1}{2^{o(1)}} 2^k\right)$.
New results

Recall that for fixed $k \geq 2$, $m(k, r) = \Theta_k(r^k)$.

Theorem (A. Khuzieva, D. Shabanov, P. Svyatokum, 2017+)

Suppose $r > k$ and let us denote $a = \left\lfloor \frac{k-1}{k} r \right\rfloor$, $b = r - a = \left\lfloor \frac{r}{n} \right\rfloor$. Then

$$m_{ol}(k, r) \geq ((k - 1)b + 1)a^{k-1} = \Omega(r^k).$$

• Thus, for fixed $k \geq 2$, $m_{ol}(k, r) = \Theta_k(r^k)$.

Theorem (A. Khuzieva, D. Shabanov, P. Svyatokum, 2017+)

$$m_{ol}(k, r) \leq k(r - 1)^2 r^k.$$
Ideas of the proof

We have to show that for

\[n < ((k - 1)b + 1)a^{k-1}, \]

Painter has a winning strategy in \((n, k, r) - \text{GAME 2}\). It can be described as follows.

1. Let us split the set of colors into two groups: \([1, ..., a]\) and \([a + 1, ..., r]\).
2. Suppose after round \(i\) vertices \(v_1, ..., v_i\) are colored.
3. In round \(i + 1\) Lister presents a vertex \(v_{i+1}\) and names the edges that contain it.
4. Let random variable \(X\) denotes the number of monochromatic edges when Painter colors all the remaining uncolored vertices (including \(v_{i+1}\)) randomly with first \(a\) colors.
Ideas of the proof

5. Painter calculates a numbers:

$$d_j = \mathbb{E}(X|v_{i+1} \text{ is colored with } j), j = 1, \ldots, a,$$

and chooses the smallest value d_q.

6. If $d_q < 1$ then Painter colors v_{i+1} with color q.

7. If $d_q \geq 1$ then chooses a color q' from $\{a + 1, \ldots, r\}$ that has not been used $k - 1$ times and Painter colors v_{i+1} with color q'.

8. If $d_q \geq 1$ and every color in $\{a + 1, \ldots, r\}$ has already been used $k - 1$ times then Painter colors v_{i+1} with color q.

It can be shown that Painter always wins by using the described strategy.
Multipartite graphs

- Let K_{m^*r} denote a complete r-partite graph with m vertices in every part.
- It is known (M. Krivelevich, N. Gazit, 2006) that for any fixed $r \geq 3$,
 $$\chi_l(K_{m^*r}) = (1 + o(1)) \log \frac{r}{r-1} m$$
as $m \to \infty$.
- We extends the above result.

Theorem (A. Khuzieva, D. Shabanov, P. Svyatokum, 2017+)

For any fixed $r \geq 3$,
$$\chi_{ol}(K_{m^*r}) = (1 + o(1)) \log \frac{r}{r-1} m$$
as $m \to \infty$.
Panchromatic colorings

- Let $H = (V, E)$ be a hypergraph. A vertex coloring with r colors is called *panchromatic* for H if every edge meets every color under this coloring.

- It appears that panchromatic r-colorings play the same role for K_{m^*r} as proper 2-colorings for $K_{m,m}$.

- Consider the panchromatic version of (n, k, r) – GAME 2:
 - the game process is absolutely the same;
 - Painter wins if the obtained r-coloring is panchromatic for the constructed hypergraph.

- Let $p_{ol}(k, r)$ denote the minimum n such that Lister has a winning strategy in the panchromatic version of (n, k, r) – GAME 2.
Panchromatic on-line colorings

Lemma 1

1. If $rm < p_{ol}(k, r)$ then $\chi_{ol}(K_{m*r}) \leq k$.
2. If $m \geq p_{ol}(k, r)$ then $\chi_{ol}(K_{m*r}) > k$.

Lemma 2

$$p_{ol}(k, r) > \frac{1}{r} \left(\frac{r}{r-1}\right)^{k-1}.$$
Few open questions

➢ Is it true that for $r > k$,

$$m_{ol} = \Theta(r^k)?$$

➢ Is it true that for $r < k$,

$$m_{ol} = \Theta_r(r^k)?$$

➢ Is it true that for fixed $r > 2$ and growing m,

$$\chi_{ol}(K_{m^*r}) - \chi_l(K_{m^*r}) \to \infty?$$