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Preliminaries
▶ Suppose we have f : C → C. z ∈ C is a zero of f if and only if

f(z) = 0.

▶ Complex variable s = σ + it.
▶ Riemann zeta-function

ζ(s) =
∞∑

n=1

1

ns

for σ > 1. Meromorphic continuation into the rest of the
plane with a simple pole at s = 1 with residue 1.

▶ Hurwitz zeta-function

ζ(s, α) =
∞∑

n=0

1

(n + α)s ,

0 < α ≤ 1. Note that ζ(s) = ζ(s, 1).
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Lerch zeta-function

▶ Lerch zeta-function

L(s, α, λ) =
∞∑

n=0

e2πiλn

(n + α)s ,

where 0 < α ≤ 1 and 0 < λ ≤ 1. Here σ > 1. As to the rest
of the complex plane, the Lerch zeta-function is defined as the
meromorphic continuation.

▶ The following equations hold

L(s, 1, 1) = ζ(s)

and
L(s, α, 1) = ζ(s, α).
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History

▶ Speiser (1935) showed that the Riemann hypothesis is
equivalent to the fact that the derivative of the Riemann
zeta-function does not have non-trivial zeros left of the critical
line σ = 1/2.

▶ Levinson and Montgomery (1974) showed the quantitative
version, i.e. that the Riemann zeta-function and its derivative
has approximately the same number of non-trivial zeros left of
the critical line.

▶ The latter result was instrumental in Levinson’s (1974) proof
that at least one-third of the non-trivial zeros of the Riemann
zeta-function lie on the critical line.

▶ Garunkštis and R. Š. (2015) extended Speiser’s result to the
extended Selberg class. This class does contain functions
which are known to have non-trivial zeros left of the critical
line.
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Functional equation

Lerch zeta-function satisfies the following functional equation

L(1− s, α, λ) =(2π)−sΓ(s)
(

exp
(
πis
2

− 2πiαλ
)

L(s, λ,−α)

exp
(
−πis

2
+ 2πiα(1− λ)

)
L(s, 1− λ, α)

)
.
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Zero free regions of L′

Theorem
If

σ > max
{
2,

(
log logα−1 − log

(
1

2e +
3 log 2 + 2

4

))
(logα)−1

}
and t ∈ R, then L′(σ + it, α, λ) ̸= 0.
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Zero free regions of L′

Let
l : σ = 1− πt

(
log

(
λ

1− λ

))−1

, λ ̸= 1

2
.

Let d(s, l) be the distance of s from l.

Theorem
Let λ ̸= 1/2. For any ϵ > 0 there is σ0 < 0 such that
L′(s, α, λ) ̸= 0 if σ < σ0 and d(s, l) > ϵ.

Theorem
Let λ = 1/2 For |t| ≥ 1, we can choose such σ′ < 0 that for all
s = σ + it, σ ≤ σ′, we have L′(s, α, 1/2) ̸= 0.
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Ideas of proof

▶ Let σ > 1. Then

− αs

logαL′(s, α, λ) =
∞∑

n=0

e2πiλn log(n + α)

logα

(
α

n + α

)s

=1 +
αs

logα

∞∑
n=1

e2πiλn log(n + α)

(n + α)s

:=1 + D(s, α, λ).

▶ For x > e1/σ − α,(
log(x + α)

(x + α)σ

)′

x
=

1− σ log(x + α)

(x + α)σ+1
< 0.
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Ideas of proof

▶ We get
∞∑

n=3

log(n + α)

(n + α)σ
≤

∫ ∞

2

log(x + α)

(x + α)σ
dx =

1 + (σ − 1) log(α+ 1)

(σ − 1)2(α+ 1)σ−1
.

▶ So

|D(s, α, λ)| ≤ ασ

logα−1

(
log(1 + α)

(1 + α)σ
+

log(2 + α)

(2 + α)σ

+
1 + (σ − 1) log(2 + α)

(σ − 1)2(2 + α)σ−1

)
.
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Ideas of proof

▶ Let σ ≥ 2. We have the following bounds

log(1 + α)

(1 + α)σ
≤ 1

2e ,
log(2 + α)

(2 + α)σ
≤ log 2

4
,

1 + (σ − 1) log(2 + α)

(σ − 1)2(2 + α)σ−1
≤ 1 + log 2

2
.

▶ Finally,

|D(σ + it, α, λ)| ≤ ασ

logα−1

(
1

2e +
3 log 2 + 2

4

)
.

▶ Choosing the right σ gives |D(σ + it, α, λ)| < 1, which proves
the theorem.
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Thank you for your attention!


