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» Hurwitz zeta-function

((s,0) = Z(ja)

n=0

0 < o < 1. Note that {(s) = ((s,1).
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» Lerch zeta-function

where 0 < a<1land 0 < A <1. Here 0 > 1. As to the rest
of the complex plane, the Lerch zeta-function is defined as the
meromorphic continuation.

» The following equations hold

L(s,1,1) = ((s)

and
L(s,a,1) = ((s, ).
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» Garunkstis and R. S. (2015) extended Speiser's result to the
extended Selberg class. This class does contain functions
which are known to have non-trivial zeros left of the critical
line.



Functional equation

Lerch zeta-function satisfies the following functional equation
_ Tis .
L(1—s,a,\) =(2m)"°T'(s) <exp (2 - 27r/a/\> L(s,\, —a)

exp <—7T215 + 2mia(1 — /\)> L(s,1— A, a)> .
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Theorem
If

1 3log2 + 2
o > max {2, <Iog|og a ! —log <2e + Oi—i_>> (log oz)_l}

and t € R, then L'(o + it,a, \) # 0.
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Theorem
Let A =1/2 For |t| > 1, we can choose such ¢’ < 0 that for all
s=o+it o <o, we have L'(s,c,1/2) # 0.
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» Let 0 > 1. Then

s 0 ) s
L/(S,CK,A) :ZeZWI/\nlog(n—’_ a) ( a )

_Ioga log av n-+o

n=0

» For x> el/7 —q,

<Iog(x+a)>/ _1-olog(x+a)

(x+ ) (x+ a)otl <0
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1+ (0 —1)log(a+1)

(x+ )

i log(n+ o) < /200 log(x+ o) dx—

(0 —1)2(a+1)-1 ~
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> We get

> log(n+ ) </°° log(x + ) dx— 14 (0 —1)log(a+1)
2

n=3 (n+a)” — (x+ ) T (e—1)2(a+1)71
» So
al log(1+a) log(2+ «)
|D(S,Oé,)\)‘ Sloga—l < (1_|_a)a (2_'_@)0

14 (o —1) Iog(2+a)>
(0 —1)2(2 + )71
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» Let o > 2. We have the following bounds
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» Let o > 2. We have the following bounds

log(1 + «) < 1 log(2 + «) < log 2

(14+a) — 2 (24a) 47
14+ (o0 —1)log(2+ ) < 1+ log2
(c —1)22+4 )t — 2

> Finally,

(1 3log2+2
ID(o + it,a, )| < —2 < +qg+—>.

loga—1 \ 2e 4
» Choosing the right o gives |D(o + it,a, \)| < 1, which proves
the theorem.



Thank you for your attention!



