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Van der Corput and Halton sequences

@ geN, g>2(base).
@ g-ary expansion: n € N,

n=> g(md  (5(n)e{0,....q—1}).
j=0
@ Van der Corput sequence (1935):

vg(n) = 3 ei(mg?~tefo,1) (n>0).
j=0

@ Halton sequence (1960): s > 2, 9 =(q1,...,9s), qi > 2,

ha(n) = (v, (n),.... Ve (n) € [0.1)°  (n>0).
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Discrepancy

@ seN,AC|0,1)®
@ 1, is the characteristic function of A
® (Yn)n>0 @ sequence in [0,1)S

The (star) discrepancy is given by

N—1
’
Dn((Yn)nz0) = sup | > 00 x[0e)(Yn) — w1+ ws|
n=0

O0<wy,...,ws<1

@ Dn((Yn)n>0) = 0 for N — oo <= (Yn)n>0 is equidistributed
@ Dn((vg(n))n>o0) < logN/N
n)

o Dn((hg(n)nso) < (log N)S/N
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Linear recurrent number systems

@ m > 2: m-bonacci sequence

R =2k, 0<k<m-—1,
m

™ =S"FM k=m.
j=1

@ Dominant root: 5 = ¢, called m-bonacci number.
@ n € N: the greedy expansion is given by

n=Ye(nF",

)

00
=0

..e1(Meo(n) € {0, 1} with no block of m consecutive 1s.
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(G-adic versions

@ (-adic van der Corput sequence

Vs(n) =) ei(mB~".

j=0

@ [3-adic Halton sequence

Hﬂ(n) = (V51(n)7"" V,Bs(n)) (B=(B1,---,Bs))-

In our case 8 = ¢m and 5; = ¢m,.

@ Ninomiya (1998): Dn((V3(n))n>0) < log N/N (general 3).
@ Hofer, laco, and Tichy (2015): Hg(n) is equidistributed.
@ Drmota (2015): Discrepancy results for “hybrid” Halton.
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Substitutions associated with (F\™)

(i) 1(i+1) fori<m,
g =
m 1 fori=m,

Bm = B,,, incidence matrix: (Bm);j = |o(j)|;-
F7 =lok(  (k=0).

Prefix-suffix graph:
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(1,2,¢) (1,3,¢) (1,m—1.¢) (1,m,e)
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Rauzy fractals

Rm() = |J BoRm(i)+7el(p) (1 <i<m).

; (p,i;8) i

S = 8 = {Bng(ik) + WCI(Urﬁr_1(pk—1) ... om(pr )P0> :
N E N Ggm}.

The elements of S, overlap only on their boundaries,

m
Rm=|JRm()= |J § =~ fundamental domain of L.
i=1 SeSk
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The tribonacci Rauzy fractal and its subdivisions
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The main result

Theorem (T. 2017)

Let my, ..., ms be pairwise distinct integers greater than or
equal to 2 and set B = (omy, .- -, ¢ms)- If

m1—1

{17(Pm17--'780m1 7"‘790ms7"'7¢m271}

is linearly independent over Q then the discrepancy of the
B-adic Halton sequence Hg(n) satisfies

max{d;—(m;—1):1<i<s}

DN((H,B(n))nzo) < N (m=D+-+(ms=1) +e

for each ¢ > 0. Here d; = dimg(0Rm,), which is strictly smaller
than m; — 1, denotes the box counting dimension of the
boundary of the Rauzy fractal Rm;, 1 <i < s.
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Van der Corput and rotations on the Rauzy fractal

o n=3, aj(n)Fj(m)
@ Choose k € N arbitrary.
@0 r<mek,4(nN)=0,e6_,(N)="---=¢ex_1(n)=1.

@ For = Ej’.‘:_(; 5k_1_j(n)<pf},, we have that

o= 1 ¥
V n) e Pk Mk m i=0 ¥m |
on (1) of o

Q@ For v =Y/ g/-(n)F/.(’”) we have that
nrs(er) € veme(er) + BS TS Rm(i) (mod L)

© The measures of the occurring sets agree, i.e., we have

+ =310 Pim - ;
{Z&, W) =\ (Vkﬂc(eﬂ + Bf, U;LrRm(’)) :
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The discrepancy of g-adic van der Corput

Lemma

Fixm > 2, let N € N be given, and choose L in a way that
F™ < N—1<F™. Then

Dn((Vior () n>0) < — + Z Ok,
m 1<k<L
where
N—-1
Ok = Sup |— 1g( nme(e1) + ax mod L) — Av(S)
SESK N nz_:o ( (o] m> Vv

with ax = a(N) chosen in a certain way.




Van der Corput and Halton Rauzy fractals Main result and idea of its proof
0000 000 0008000

The discrepancy of 3-adic Halton

Lemma

Fixmy,...,mg > 2, let N € N be given, and choose Ly, ..., Lg
in a way that FL,"H <N-1< Fgm. Then for
ﬁ:(1817"'755):(Somﬂ"'?(pms)

1L,.+ Z Z Oky,... ks

Bi' k<t 1<ke<ls

Dn((Hg(n))n>0) < Z
i—1

where
Ok s = S“ps1 esif’”,...,ssesg"s)

3 0 Ty 15, (1e.m (@1) + g mod L, ) = 124 M (S1) -

Here oy, = ax,(N) is chosen in a certain way.
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Discrepancy of algebraic rotations

Lemma

Lety = (v1,...,7s) € R® with algebraic numbers ~1, . .. ,~vs and
assume that {1,v1,...,7s} is linearly independent over Q.
Then for each ¢ > 0 we have

Dn((my mod [0, 1)%)550) < N°1.

Proof.

Using a classical result by Wolfgang Schmidt (1970) we see
that a vector (71, . ..,~s) of real algebraic numbers for which
{1,7,...,7s} is linearly independent over Q is of finite type 1.
Type 1 implies the stated discrepancy bound; see the book by
Kuipers and Niederreiter (1974). Ol
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The easiest example

Example

Consider the golden mean ¢, and the dominant root 3 of the
tribonacci polynomial X3 — X% — X — 1. The Rauzy fractal R» is
an interval, hence, dimgdR, = 0. For R3 we know from lto and
Kimura (1991) that dimgdR3 = 1.09336.. .. Since Q(y2, ¢3) has
degree 6 over Q the linear independence assumption in the
main theorem is satisfied and we obtain (choosing £ > 0
sufficiently small)

DN((Hpp.05) (M) n0) < N70-30221,
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Future projects

© Generalizeto Gp.g = a(Gpig—1+ -+ Gp) with a > 2
e Characteristic roots are no longer units.
e Rauzy fractals live in open subrings of adéles (p-adic
factors).
e p-adic version of approximation theorems (Schlickewei)
needed.
© More general recurrences
e Language is no longer symmetric; see Ninomiya.
e Extensions to Dumont-Thomas Numeration.
© Bounded remainder sets; see Steiner (2006) for van der
Corput.

© Improvement of discrepancy estimates.
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