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1. Introduction

In [11], Mahler introduced a classification of transcendental numbers in terms
of their approximation properties by algebraic numbers. More precisely, he intro-
duced for each k 2 N and each α 2 R the Diophantine exponent

ωk(x) = supfω 2 R : jP(x)j 6 H(P)�ω

for infinitely many irreducible P 2 Z[X], deg(P) 6 kg. (1)

Here, H(P) denotes the naive height of the polynomial P, i. e. the maximum
absolute value among the coefficients of P.
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Mahler defined classes of numbers according to the asymptotic behaviour
of these exponents as k increases. More precisely, let

ω(x) = lim sup
k!1

ωk(x)
k

.

The number x belongs to one of the following four classes.

� x is an A-number if ω(x) = 0 , so that x is algebraic over Q.

� x is an S-number if 0 < ω(x) <1.

� x is a T -number if ω(x) =1, but ωk(x) <1 for all k.

� x is a U-number if ω(x) =1 and ωk(x) =1 for all k large enough.

All four classes are non-empty, with almost all real numbers being S-numbers.
Every real number belongs to one of the classes, and the classes are invariant under
algebraic operations over Q.

In analogy with Mahler’s classification, Koksma [10] introduced a different
classification based on the exponent

ω�k(α) = supfω� 2R : jx�αj6H(α)�ω
�

for infinitly many α2Q\R, deg(α)6 kg.

In this case, H(α) denotes the naive height of α, i. e. the naive height of the minimal
integer polynomial of α. In analogy with Mahler’s classification, one defines w�(x)
and A�-, S�-, T �- and U�-numbers.

The reader is referred to the monograph [4] for an excellent overview of the
classifications and their properties. A particular property is that the classifications
coincide, so that A-numbers are A�-numbers, S-numbers are S�-numbers and so
on. The individual exponents however need not coincide.

In [18], Yu introduced a classification similar to Mahler’s for d-tuples of real
numbers. In brief, the classification is completely similar, except that the exponents
ωk(x) are now defined in terms of integer polynomials in d variables.

An analogue of Koksma’s classification was introduced by Schmidt [16]. How-
ever, the relation between the two classifications is not at all clear, and it is conjectured
that the two classifications do not agree [16].

It is the purpose of the present note to study the Diophantine approximation
problems arising within Yu’s classification. We recall the simple connection between
the questions arising from Mahler’s classification, and the problem of Diophantine
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approximation with dependent quantities. A classical problem in Diophantine ap-
proximation, given x = (x1 , . . . , xd) 2 Rd , is to find ω for which

kq � xk 6 ( max
1�i�d

jqij)�ω for infinitely many q = (q1 , . . . , qd) 2 Zd, (2)

where as usual k � k denotes the distance to the nearest integer. Comparing (1) and
(2), one sees that one can define Mahler’s exponents ωk by restricting the classical
problem to a consideration of vectors x belonging to the Veronese curve

Γ =
n

(x, x2 , . . . , xk) 2 Rk : x 2 R
o

.

Similarly, in order to understand the exponents arising in Yu’s classification, one
should once more consider the corresponding problem of a single linear form, but
replace the Veronese curve by the variety obtained by letting the coordinates consist
of the distinct non-constant monomials in d variables of total degree at most k, say.
The resulting Diophantine approximation properties considered in this case would
correspond to the multidimensional analogue of ωk , i. e.

ωk(x) = supfω 2 R : jP(x)j 6 H(P)�ω

for infinitely many P 2 Z[X1 , . . . , Xd], deg(P) 6 kg.

Throughout, let n =
�
k+d
d

�� 1 be the number of nonconstant monomials in d

variables of total degree at most k. In addition to the usual, naive height H(P) ,
we will also use the following modification eH(P) , which is the maximum absolute
value of the coefficients of the non-contant terms of P. The following is a slight
re-statement of [18, Theorem 1].

Theorem 1. For any x = (x1 , . . . , xd) 2 Rd , there exists c(k, x) > 0 such that for
all Q > 1 , there is a polynomial P 2 Z[X1 , . . . , Xd] of total degree at most k and
height H(P) 6 Q, such that

jP(x)j < c(k, x)Q�n.

Replacing the condition H(P) 6 Q by eH(P) 6 Q, we may always choose c(k, x) = 1 .

The proof is essentially an application of the pigeon hole principle, and is
completely analogous to the classical proof of Dirichlet’s approximation theorem
in higher dimension. As a standard corollary, one obtains the first bounds on the
exponents ωk(x) .
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Corollary 2. For any x = (x1 , . . . , xd) 2 Rd , there exists a c(k, x) > 0 such that

jP(x)j < c(k, x)H(P)�n,

for infinitely many P 2 Z[X1 , . . . , Xd] of total degree at most k. In particular,
ωk(x) > n.

The corollary tells us what the normalising factor in the multidimensional definition
of ω(x) should be, namely the number of non-constant monomials in d variables
of total degree at most k.

Inspired by the above result, we will define the notions of k-very well approx-
imable, k-badly approximable, k-singular and k-Dirichlet improvable. We will then
proceed to prove that the set defined in this manner are all Lebesgue null-sets and
so are indeed exceptional. In the case of k-badly approximable results, we will also
show that these form a thick set, i. e. a set whose intersection with any ball has
maximal Hausdorff dimension. In fact, many of our results are somewhat stronger
than these statements. The properties are all consequences of other work by various
authors (see below). Finally, we will deduce a Roth type theorem from Schmidt’s
Subspace Theorem [15].

It is not the aim of the present paper to prove deep results concerning Yu’s
classification, but rather to examine the extent to which already existing methods
have something interesting to say about the classification.

2. Results and proofs

In each of the following subsections we introduce a property of approximation
of d-tuples of real numbers by algebraic numbers, and prove a result about it which
extends previous results known in case d = 1 .

2.1. k-very well approximable points

A point x = (x1 , . . . , xd) 2 Rd is called k-very well approximable if there
exists ε > 0 and infinitely many polynomials P 2 Z[X1 , . . . , Xd] of total degree at
most k, such that

jP(x)j � H(P)�(n+ε) . (3)

In other words, x is k-very well approximable if the exponent n on the right
hand side in Corollary 2 can be increased by a positive amount. We will prove
that this property is exceptional in the sense that almost no points with respect to
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the d-dimensional Lebesgue measure are k-very well approximable. In fact, we will
show that this property is stable under restriction to subsets supporting a measure
with nice properties.

We recall some properties of measures from [7]. A measure µ on Rd is said to
be Federer (or doubling) if there is a number D > 0 such that for any x 2 supp(µ)
and any r > 0 , the ball B(x, r) centered at x of radius r satisfies

µ
�
B(x, 2r)

�
< Dµ

�
B(x, r)

�
. (4)

The measure µ is said to be absolutely decaying if for some pair of numbers C, α > 0

µ
�
B(x, r) \ L(ε)

�
6 C

�ε
r

�α
µ
�
B(x, r)

�
, (5)

for any ball B(x, r) with x 2 supp(µ) and any affine hyperplane L, where L(ε)

denotes the ε-neighbourhood of L. A weaker variant of the property of being
absolutely decaying is obtained by replacing r in the denominator on the right hand
side of (5) by the quantity

supfc > 0 : µ(fz 2 B(x, r) : dist(z, L) > cg) > 0g.

In this case, we say that µ is decaying. If the measure µ has the property that

µ(L) = 0, (6)

for any affine hyperplane L, µ is called non-planar. Note that an absolutely decaying
measure is automatically non-planar, but a decaying measure need not be non-planar.
Finally, µ is called absolutely friendly if it is Federer and absolutely decaying, and is
called friendly if it is Federer, decaying, and non-planar.

Theorem 3. Let µ be an absolutely decaying Federer measure on Rd . For any k 2 N,
the set of k-very well approximable points is a null set with respect to µ. In particular,
Lebesgue almost-no points are k-very well approximable.

Our proof relies on results of [7], in which the case d = 1 was proved.

Proof. Let f : Rd ! Rn be defined by f(x1 , . . . , xd) = (x1 , x2 , . . . , xd�1x
k�1
d , xkd) ,

so that f maps (x1 , . . . , xd) to the n distinct nonconstant monomials in d variables
of total degree at most k. Clearly, f is smooth, and by taking partial derivatives, we
easily see that Rn may be spanned by the partial derivatives of f of order up to k.



182 S. Kristensen (Aarhus), S. H. Pedersen (Aarhus), B. Weiss (Tel-Aviv) [298

From [7, Theorem 2.1(b)] we immediately see that the pushforward f�µ is
a friendly measure on Rn . We now apply [7, Theorem 1.1], which states that
a friendly measure is strongly extremal, i. e. for any δ > 0 , almost no points in the
support of the measure have the property that

nY
i=1

jqyi � pij < q�(1+δ) ,

for infinitely many p 2 Zn , q 2 N. Clearly, this implies the weaker property
of extremality, i. e. that for any δ0 > 0 , almost no points in the support of the
measure satisfy

max
16i6n

jqyi � pij < q�( 1
n+δ

0) , (7)

for infinitely many p 2 Zn , q 2 N.
To get from the above to a proof of the theorem, we need to re-interpret this

in terms of polynomials. We apply Khintchine’s transference principle [5, Theorem
V. IV] to see that (7) is satisfied infinitely often if and only if

jq � y � pj < H(q)�(n+δ00) , (8)

for infinitely many q 2 Zn , p 2 Z, where δ00 > 0 can be explicitly bounded in terms
of n and δ0 . Now, y lies in the image of f, so that the coordinates of y consist of all
monomials in the variables (x1 , . . . xd) , whence any polynomial in these d variables
may be expressed on the form P(x) = q � y�p. The coefficients of P include all the
coordinates of q and hence H(P) � H(q) , so that if (3) holds for infinitely many P
with ε = δ00 , then (8) holds for infinitely many q, p. Since the latter condition is
satisfied on a set of µ-measure zero, it follows that µ-almost all points in Rd are
not k-very well approximable.

The final statement of the theorem follows immediately, as the Lebesgue
measure clearly is Federer and absolutely decaying. �

Some interesting open questions present themselves at this stage. One can ask
whether a vector exists which is k-very well approximable for all k. We will call such
vectors k-very very well approximable. It is not difficult to prove that the set of k-very
well approximable vectors is a dense Gδ-set, so the question of existence can be
easily answered in the affirmative. However, determining the Hausdorff dimension
of the set of very very well approximable vectors is an open question. When d = 1 ,
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it is known that the Hausdorff dimension is equal to 1 due to work of Durand [6],
but the methods of that paper do not easily extend to larger values of d.

Taking the notion one step further, one can discuss vectors x 2 Rd such that
for some fixed ε > 0 , for any k 2 N, there are infinitely many integer polynomials P
in d variables of total degree at most k, such that

jP(x)j � H(P)�(n+ε) ,

where as usual n =
�
k+d
d

��1 , i. e. in addition to x being very very well approximable,
we require the very very very significant improvement in the rate of approximation
to be uniform in k. We will call such vectors very very very well approximable.
Once again, these vectors form a dense Gδ subset (and in particular, they exist).
Determining the Hausdorff dimension of the set of very very very well approximable
numbers is an open problem.

2.2. k-badly approximable points

A point x = (x1 , . . . , xd) 2 Rd is called k-badly approximable if there exists
C = C(k, x) such that

jP(x)j � CH(P)�n,

for all non-zero polynomials P 2 Z[X1 , . . . , Xd] of total degree at most k. In
other words, a point x 2 Rd is k-badly approximable if the approximation rate in
Corollary 2 can be improved by at most a positive constant in the denominator.
Let Bk be the set of k-badly approximable points. Note that each set Bk is a null
set, which is easily deduced from the work of Beresnevich, Bernik, Kleinbock and
Margulis [2]. We will now show:

Theorem 4. Let B � Rd be an open ball and let M 2 N. Then

dim B \
M\
k=1

Bk = d.

This statement is deduced from the work of Beresnevich [1], who proved the case
d = 1 .

Proof. Let nk =
�
k+d
d

�� 1 as before, but with the dependence on k made explicit
in notation. Let f : Rd ! RnM be given by f(x1 ,. . .,xd)=(x1 ,x2 ,. . .,xd�1x

M�1
d ,xMd ) ,
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with the monomials ordered in blocks of increasing total degree. Let

rk =

�
1
nk

, . . . ,
1
nk

, 0, . . . , 0
�
2 RnM ,

where the non-zero coordinates are the first nk coordinates, so that rk is a probability
vector.

We define as in [1] the set of r -approximable points for a probability vector r

to be the set

Bad(r) =
n

y = (y1 , . . . , ynM ) : for some C(y) > 0,

max
16i6nM

kqyik1/ri > C(y)q�1 , for any q 2 N
o

.

Here, kzk denotes the distance to the nearest integer, and we use the convention
that z1/0 = 0 .

Let 1 6 k 6 M be fixed and let x 2 Rd satisfy that f(x) 2 Bad(rk) . From [1,
Lemma 1]) it follows, that there exists a constant C = C(k, x) , such that the only
integer solution (a0 , a1 , . . . , ank ) to the system���a0 + a1x1 + a2x2 + . . .+ ank�1xd�1x

k�1
d + ankx

k
d

��� < CH�1 , max
i
jaij < H1/nk

is zero. Here, the choice of rk and the ordering of the monomials in the function f

ensure that the effect of belonging to Bad(rk) will only give a polynomial expression
of total degree at most k. Indeed, writing out the full equivalence, we would have
the first inequality unchanged, with the second being max

i
jaij < Hrk,i , where the

exponent is the i’th coordinate of rk . If this coordinate is 0 , we are only considering
polynomials where the corresponding ai is equal to zero.

Rewriting this in terms of polynomials, for any non-zero P 2 Z[X1 , . . . , Xd]
with H(P) < H1/nk and total degree at most k, we must have

jP(x)j � CH�1 > CH(P)�nk .

It follows that x 2 Bk , and hence f�1 (Bad(rk)) � Bk . The result now follows
by applying [1, Theorem 1], which implies that the Hausdorff dimension of the
intersection of the sets f�1 (Bad(rk)) is maximal. �
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Again, an interesting open problem presents itself, namely the question of uni-
formity of the constant C(k, x) in k. Is it possible to construct a vector in Bk for
all k with the constant being the same for all k? And in the affirmative case, what
is the Hausdorff dimension of this set? A weaker version of this question would be
to ask whether there is some natural dependence of C(k, x) on k, i. e. whether one
can choose C(k, x) = C(x)k or a similar dependence. We do not at present know
the answer to these questions.

2.3. (k, ε) -Dirichlet improvable vectors and k-singular vectors

Let ε > 0 . A point x is called (k, ε) -Dirichlet improvable if for any ε there exists
a Q0 2 N, such that for any Q � Q0 there exists a polynomial P 2 Z[X1 , . . . , Xd]
with total degree at most k,

eH(P) � εQ and jP(x)j � εQ�n.

Note that we are now using eH as a measure of the complexity of our polynomials.

In view of Theorem 1, if ε > 1 , all points clearly have this property, and so
the property is only of interest when ε < 1 . A vector is called k-singular if it is
(k, ε) -Dirichlet improvable for every ε > 0 .

We will need a few additional definitions before proceeding. For a function
f : Rd ! Rn , a measure µ on Rd and a subset B 2 Rd with µ(B) > 0 , we define

kfkµ,B = sup
x2B\supp µ

jf(x)j.

Let C, α > 0 and let U � Rd be open. We will say that the function f is (C, α) -good
with respect to µ on U if for any ball B � U with centre in supp µ and any ε > 0 ,

µ fx 2 B : jf(x)j < εg 6 C
�

ε

kfkµ,B

�α
µ
�
B
�

.

We will say that a measure µ on Rd is k-friendly if it is Federer, non-planar
and the function f : Rd ! Rn given by f(x1 , . . . , xd) = (x1 , x2 , . . . , xd�1x

k�1
d , xkd)

is (C, α) -good with respect to µ on Rd for some C, α > 0 .
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We have

Theorem 5. Let µ be a k-friendly measure on Rd . Then there is an ε0 = ε0 (d, µ)
such that the set of (k, ε) -Dirichlet improvable points has measure zero for any ε < ε0 .
In particular, the set of k-singular vector has measure zero.

In the case when d = 1 , k > 2 and µ being the Lebesgue measure on R,
the result is immediate from work of Bugeaud [3, Theorem 7], in which an explicit
value of ε is given, namely ε = 2�3k�3 . Our proof is non-effective and relies
on [8, Theorem 1.5].

Proof. Under the assumption on the measure µ, [8, Theorem 1.5] implies the
existence of an ε0 > 0 such that for all eε < ε0

f�µ(DIeε(T )) = 0 for any unbounded T � a+.

Here, f is the usual function f(x1 , . . . , xd) = (x1 , x2 , . . . , xd�1x
k�1
d , xkd) , a+

denotes the set of (n + 1) -tuples of (t0 , t1 , . . . , tn) such that t0 =
nP
i=1

ti , ti > 0

for each i, and DIeε(T ) denotes the set of vectors y = (y1 , . . . , yn) 2 Rn for which
there is a T0 such that for any t 2 T with ktk > T0 , the system of inequalities

8>><>>:
jq � y � pj < eεe�t0

jqij < eεeti i = 1, . . . , n,

has infinitely many non-trivial integer solutions (q, p) = (q1 , . . . , qn, p) 2 Zn+1nf0g.
Our result follows by specialising the above property. Indeed, we apply this to

ε = eεn+1 < εn+1
0 and the central ray in a+ ,

T =

��
t,
t

n
, . . . ,

t

n

�
: t = log

�
Qeε
�
n, Q � [ε0 ] + 1, Q 2 N

�
.

The measure f�µ is the pushforward under f of the k-friendly measure µ. It follows
that the set of x 2 Rd for which their image under f is in DIeε(T ) is of measure
zero for all eε < εn+1

0 . From the definition of DIeε and the choice of a+ and T ,
f(x) 2 DIeε if and only if there is a Q0 > maxf[ε0 ] + 1, eεeT0 /ng, such that for
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Q > Q0 there exists q0 , q1 , . . . , qn 2 Z with max
1�i�n

jqij < eεet/n = Q, such that

j(q1 , . . . qn) � f(x) + q0j < eεe�t = εQ�n.

Reinterpreting the right hand side of the above as a polynomial expression in x , this
recovers the exact definition of x being (k, ε1/(n+1) ) -Dirichlet improvable. �

Note that the proof in fact yields a stronger statement. Namely, by adjusting
the choice of a+ , we could have put different weights on the coefficients of the
approximating polynomials, thus obtaining the same result, but with a non-standard
(weighted) height of the polynomial.

As with the preceding results, some open problems occur. We do not at present
know if there exist a vector x , for which there are positive numbers εk > 0 , such
that x 2 DI(k, εk) for all k. If this is the case, determining the Hausdorff dimension
of the set of such vectors is another open problen. Additionally, the same questions
can be asked if we require ε to be independent of k, i. e. if we ask for the existence
of a vector x 2 DI(k, ε) for all k.

Let us now say that x 2 Rd is k-algebraic if there exists a nontrivial polynomial
P 2 Z[X1 , . . . , Xd] of degree at most k, such that P(x) = 0 . It is clear that if x
is k-algebraic, then it is k-singular. In light of Theorem 5, it is natural to inquire
whether all k-singular points are k-algebraic. In this direction we have:

Theorem 6. For d � 2 , for any k � 1 , there exists a k-singular point in Rd which is
not k-algebraic.

The proof relies on results of [9]. For d = 1 , much less appears to be known in
general. For k = 2 , it follows from a result of Roy [13] combined with a transference
result (see [5, Theorem V. XII]) that the answer is affirmative. Roy further indicates
in [14] that he has an unpublished result for k = 3 , which would imply the analogue
of Theorem 6 in the case d = 1 , k = 3 . Already for k = 2 , the construction is
rather involved and a general approach would be desirable.

Proof. Once more, for a fixed k, we take f as in the proof of Theorem 5. In the
notation of [9], it is clear that x 2 Rd is k-singular if f(x) 2 Sing(n) . Also f(x) is
totally irrational in the notation of [9] if and only if x is not k-algebraic.

Since the image of f is a d-dimensional nondegenerate analytic submanifold
of Rn , for d � 2 we can apply [9, Theorem 1.2] to conclude that the intersection
of f

�
Rd
�

with Sing(n) contains a totally irrational point. �
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Theorem 5 does not give an explicit value of ε0 , and indeed the value depends
on the measure µ. However we can at least push ε0 to the limit ε0 % 1 in the case
when µ is the Lebesgue measure on Rd to obtain a result on the k-singular vectors.

Theorem 7. For any d, the set of x which are (k, ε) -Dirichlet improvable for some
ε < 1 and some k, has Lebesgue measure zero.

The proof relies on the work of Shah [17].

Proof. This is a direct consequence of [17, Corollary 1.4], where the set N is
chosen to be the diagonal N = f(N, . . . , N) : N 2 Ng. �

Note that once again, the result of Shah gives a stronger result in the sense
that we may take a non-standard height as in the preceding case and retain the
conclusion.

2.4. Algebraic vectors

Our final result, which is again a corollary of known results, is an analogue
of Roth’s Theorem [12], which states that algebraic numbers are not very well
approximable. Schmidt’s Subspace Theorem, see e. g. [15], provides a higher di-
mensional analogue of this result, and it is this theorem we will apply. We will
say that a vector α = (α1 , . . . , αd) 2 Rd is algebraic of total degree k if there is
a polynomial Pα 2 Z[X1 , . . . , Xd] of total degree k with Pα(α) = 0 and if no
polynomial of lower total degree vanishes at α.

Theorem 8. Let α = (α1 , . . . , αd) 2 Rd be an algebraic d-vector of total degree
more than k. Then for any ε > 0 there are only finitely many non-zero polynomials
P 2 Z[X1 , . . . , Xd] of total degree at most k with

jP(α)j < H(P)�(n+ε) ,

where n =
�
k+d
d

�� 1 as usual.

Proof. Since α in not algebraic of total degree at most k, by definition it follows
that the numbers 1, α1 , α2 , . . . , αd�1α

k�1
d , αkd are algebraically independent over Q.

From a corollary to Schmidt’s Subspace Theorem, [15, Chapter VI Corollary 1E],
it follows that there are only finitely many non-zero integer solutions (q0 , . . . , qn)
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to ���q0 + q1α1 + q2α2 + . . .+ qn�1αd�1α
k�1
d + qnα

k
d

��� < ( max
1�i�n

jqij)�(n+ε) .

This immediately implies the result. �
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