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Abstract: Akbari, Etesami, Mahini, and Mahmoody conjectured that every proper edge-coloring
of Kn with n colors contains a Hamilton cycle with � O(log n) colors. They proved that there is
always a Hamilton cycle with � 8

p
n colors. In this note we improve this bound to O(log3 n) .
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An edge-coloring of Kn is proper if no two edges of the same color share
a vertex. The smallest number of colors needed to properly edge-color a graph G

is called the chromatic index of G, denoted by χ0(G) . It is well known that
χ0(Kn) = n� 1 if n is even and χ0(Kn) = n is n is odd.

Akbari, Etesami, Mahini, and Mahmoody [1] investigated cycles in properly
edge-colored complete graphs. Specifically they looked for Hamilton cycles in
properly colored complete graphs which have either many or few colors (a Hamilton
cycle in a graph is one which passes through every vertex.) When looking for
Hamilton cycles with few colors it is natural to bound the total number of colors
in the properly colored Kn . Otherwise, if one looks at a properly colored Kn with�
n
2

�
colors, then every Hamilton cycle trivially has exactly n colors. Because of this

Akbari et al. looked at properly colored Kn with χ0(Kn) colors. They made the
following conjecture about how few colors one can have on a Hamilton cycle in
such a coloring.
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Conjecture 1. (Akbari, Etesami, Mahini, and Mahmoody [1]). Every properly
edge-colored Kn with χ0(Kn) colors has a Hamilton cycle with � O(log n) colors.

To see that there are proper χ0(Kn) -edge-colored Kn with no Hamilton cycles
with less than log n colors, consider a coloring of the edges of the complete graph
with vertex set Zk2 , where the edge ij is colored by color i+j. Indeed, any Hamilton
cycle of this graph contains 0 and any other vertex i is a sum of the colors of the
edges on the path from 0 to i. Thus the number of edge colors must be at least
dim(Zk2 ) = k.

Towards Conjecture 1, Akbari et al. proved that every properly χ0(Kn) -edge-
colored Kn has a Hamilton cycle with 8

p
n colors [1]. In this note we explain how

to improve this to O(log3 n) .

Theorem 1. For any sufficiently large n, any properly edge-colored Kn with χ0(Kn)
colors contains a Hamilton cycle with at most O(log3 n) colors.

To prove Theorem 1 we select a set of log3 n colors at random and show that,
with high probability, the subgraph consisting of these colors is Hamiltonian. The
Hamiltonicity of this subgraph follows from the proof of Theorem 10 in Christofides
and Markstrom [4]. First we show that, with high probability, all eigenvalues of this
graph except the first one are small in absolute value, so that the graph is pseudo-
random. Then a result of Krivelevich and Sudakov [5] implies that such graphs are
Hamiltonian.

Given a d-regular graph H with vertex set f1, . . . , ng, let A be the corre-
sponding adjacency matrix, i. e. an n � n matrix such that Ai,j = 1 if ij 2 E(H)
and Ai,j = 0 otherwise. Let λ1 � λ2 � . . . � λn be the eigenvalues of A. Then we

have d = λ1 and jλij � d for all i 2 [n] . We define λ(H) =
n

max
i=2

jλij and note that

the smaller λ(H) is, the more pseudo-random our graph H is. For any λ > 0 , we
say that H is an (n, d, λ) -graph if λ(H) � λ.

Theorem 2 (Krivelevich and Sudakov [5]). Let H be an (n, d, λ) -graph. If n is
large enough and

λ � (log log n)2

1000 log n(log log log n)
d,

then H is Hamiltonian.
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Thus it will suffice to show that by choosing d = log3 n colors at random, the
graph H we obtain is an (n, d, 2 log log n

log n d) -graph with high probability. Actually, H
will only be regular when n is even and so we first prove the result for even n.

Lemma 3. For any sufficiently large even n, any properly edge-colored Kn with n� 1
colors contains a Hamilton cycle with at most log3 n colors.

The case of odd n can then be obtained from the above lemma as follows.

Proof of Theorem 1. The case of even n is given by Lemma 3. So let n be odd
and let a proper n edge-coloring of Kn be given. Note that each vertex u has a color
c(u) which is not used by any of the edges incident to it. Moreover, since there are n
colors, each color a must appear (n� 1)/2 times and hence there is some vertex u
such that c(u) = a. Thus if we add a new vertex v and for each u 2 Kn color the
edge uv with c(u) , we obtain a proper n edge-coloring of Kn+1 . By Lemma 3, it
has a Hamilton cycle with at most log3 (n+ 1) colors, which forms a Hamilton path
on Kn . By connecting the endpoints of the path (possibly using an extra color), we
obtain a Hamilton cycle with at most log3 (n+ 1) + 1 colors. �

The fact that λ(H) is small will follow from an operator Hoeffding inequality
for Hilbert spaces, obtained by Christofides and Markstrom [3] (extending the work
of [2]). To this end, let V be a Hilbert space of dimension d and S(V ) be the set
of self adjoint operators on V . For any A, B 2 S(V ) , we define A � B iff B � A
is positive semidefinite and define [A, B] = fC 2 S(V ) : A � C � Bg. We let
jjAjj = sup

jvj=1
jAvj denote the operator norm, where jvj =

p
hv, vi.

Theorem 4 (Operator Hoeffding [3, 4]). Let V be a Hilbert space of dimension n

and let 0 = X0 , X1 , . . . , Xd be a martingale taking values in S(V ) , such that
Xi �Xi�1 2

�� 1
2I, 1

2I
�

for all i 2 [d] . Then for 0 < t < 1/2 ,

P [jjXd � E[Xd]jj � dt] � 2n exp(�2dt2 ).

Proof of Lemma 3. Given a proper edge-coloring c : E(Kn) ! [n � 1] , let
d = log3 n and let c1 , . . . , cd be a sequence of colors chosen independently and
uniformly at random from [n � 1] . For each l 2 [d] , let A(l) be the adjacency
matrix of color cl with probability n�1

n and A(l) = I with probability 1/n. Let
A = A(1) + . . .+A(d) and note that the probability that all d colors are distinct and
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all A(l) 6= I is n�1
n

n�2
n . . . n�dn = 1 � o(1) . In this case, A is the adjacency matrix

of a simple, d-regular graph H.
Furthermore, we claim that λ(H) = jjA � d

nJjj where J is the all 1’s matrix.
Indeed, letting v1 , . . . , vn be an orthonormal basis of eigenvectors of A (v1 is the all
1’s vector), with corresponding eigenvalues λ1 � . . . � λn , we have (A� d

nJ)v1 = 0
and (A� d

nJ)vi = λivi for all i � 2 .
Also note that for each l 2 [d] , the eigenvalues µ1 � . . . � µn of A(l) satisfy

µ1 = 1 and jµij � 1 for i � 2 . Moreover, v = (1, . . . , 1) is an eigenvector of µ1 and
hence Yl =

1
2 (A(l)� 1

nJ) has eigenvalues 0, µ2 /2, . . . , µn/2 , so that Yl 2
�� 1

2I, 1
2I
�

.
Moreover, we have E[Yl] = 0 which implies that Xi = Y1 + . . .+Yi is a martingale.
Note also that Xd = 1

2 (A � d
nJ) and Xi 2 S(Rn) for all i. Thus, we can apply

Theorem 4 with t = log log n/ log n to conclude that

P
�

1
2
λ(H) � dt

�
= P [jjXdjj � dt] � 2n exp(�2dt2 ) = 2n1�2(log log n)2 ! 0

as n!1. Thus for n large enough, we have that with high probability

λ(H) � 2dt � (log log n)2

1000 log n(log log log n)
d,

and so in this case, we may apply Theorem 2 to conclude that H has a Hamilton
cycle. �

Remark. One can deduce the Hamiltonicity of the random set of log3 n colors directly
from the statement of Theorem 10 in [4]. We choose not to do so for the convenience of
the reader and since the proof of Christofides and Markstrom in [4] needs a version of
Theorem 2 that works for multi-graphs with self-loops. Although such a theorem should
have a very similar proof to that in [5], it does not appear in the literature. We avoid
this issue by observing that the graph we obtain is simple with high probability.
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