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Abstract: The paper deals with on-line and list on-line colorings of graphs and hypergraphs.
On-line coloring of a hypergraph is a game with two players, Lister and Painter, in which Lister
picks a vertex one by one (or a set of vertices) and Painter should choose a color for the given
vertex (or choose a subset to be colored). The problem is to find an extremal value of some
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1. Introduction

The work is devoted to the on-line colorings of graphs and hypergraphs. Let us start
with recalling some definitions.

1.1. Definitions

Let H = (V , E) be a hypergraph (or a graph). A vertex subset W � V is called
independent in H if it does not contain completely any edge of H, i.e. for every
A 2 E, A nW 6= ∅.
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A vertex coloring f is a mapping from the vertex set V to some set of colors C.
A coloring is called proper for H if there is no monochromatic edges in E under it.
The chromatic number of H, χ(H) , is the minimum r such that there is a proper
coloring for H with r colors (H is r-colorable).

Another classical notion concerning colorings of graphs and hypergraphs is
the list chromatic number. A hypergraph H = (V , E) is said to be r-choosable (or
list r-colorable) if for every list assignment L = fL(v) : v 2 V g such that jL(v)j = r

for any v 2 V (r-uniform list assignment), there exists a proper coloring from the
lists, i.e. for every v 2 V, we should use a color from L(v) . The list chromatic number
of H, denoted by χl(H) , is the minimum r such that H is r-choosable.

The concept of the list chromatic number was recently brought to the on-line
setting, see [1]– [3]. Suppose H = (V , E) is a hypergraph and r > 2 is an integer.
Two players, Lister and Painter, play the following Game1 (H, r) game. Let us
set X0 = ∅. In the round number i Lister presents a non-empty set of vertices
Vi � V n (X0 [ . . . [ Xi�1 ) and Painter chooses an independent subset Xi � Vi ,
i.e. the vertices of Xi are colored with color number i. After i rounds the vertices
in X1 [ . . . [ Xi are colored. If a vertex v belongs to exactly l sets Vj1 , . . . , Vjl ,
1 6 j1 < . . . < jl 6 i then v is said to have l permissible colors after i rounds. The
winning rule is the following.

� Lister wins if after some round there exists a non-colored vertex with r per-
missible colors.

� Otherwise Painter wins, i.e. after some round all the vertices are colored.

Hypergraph H is said to be r-paintable (or list on-line r-colorable) if Painter has
a winning strategy in (H, r) -game. The minimum r such that H is r-paintable is
called the list on-line chromatic number and denoted by χol(H) . It is easy to see that

χ(H) 6 χl(H) 6 χol(H).

1.2. Colorings of the complete multipartite graphs and hypergraphs

List colorings of graphs and hypergraphs were introduced independently by
Vizing (see [4]) and by Erdős, Rubin and Taylor (see [5]). One of the first results
concerning the list chromatic number states that it can be much larger than the usual
chromatic number. In particular, the authors in [5] showed that the list chromatic
number of the complete bipartite graph Km,m with m vertices in any part grows as



309] On-line and list on-line colorings of graphs and hypergraphs 41

binary logarithm of m:

χl(Km,m) = (1 + o(1)) log2 m as m!1. (1)

Surprisingly the above asymptotic representation remains true for the list on-
line chromatic number. In [6] Duraj, Gebowski and Kozik showed that

χol(Km,m) = log2 m+O(1) as m!1. (2)

This provides the first example of a graph for which the difference between the list
on-line chromatic number and the list chromatic number can be arbitrarily large.
Since χl(Km,m) = log2 m� Ω(log2 log2 m) (see [6]) we have

χol(Km,m) � χl(Km,m) = Ω(log2 log2 m).

The result (1) for Km,m was generalized in different ways. The first general-
ization considers the complete r-partite graph Km�r with equal size of parts m.
Krivelevich and Gazit established (see [7]) the asymptotic behavior of χl(Km�r) for
fixed r > 3 and growing m:

χl(Km�r) = (1 + o(1)) log r
r�1
m as m!1. (3)

In [9] Shabanov showed that the same asymptotic representation holds when
ln r = o(ln m) .

The second generalization deals with the complete multi-partite uniform hy-
pergraphs. Let Hm�r denote the complete r-partite r-uniform hypergraph with m

vertices in every part. In [10] Haxell and Verstraëte proved that for fixed r > 3 ,

χl(Hm�r) = (1 + o(1)) logr m as m!1. (4)

Recently the results (1), (3), (4) were extended by Shabanov and Shaikheeva
(see [8]). Let H(m, r, k) denote the complete r-partite k-uniform hypergraph
with m vertices in every part, in which any edge takes exactly one vertex from some
k 6 r parts. Clearly, H(m, r, 2) = Km�r and H(m, r, r) = Hm�r . The authors in
[8] showed that for fixed 2 6 k 6 r,

χl(H(m, r, k)) = (1 + o(1)) log r
r�k+1

m as m!1. (5)
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1.3. Main result

The main result of the current work provides the asymptotic behavior for the
list on-line chromatic number of the complete r-partite k-uniform hypergraph
H(m, r, k) . As in (2) the asymptotics of χol(H(m, r, k)) coincides with the asymp-
totics of the list chromatic number (5).

Theorem 1. For fixed 2 6 k 6 r,

χol(H(m, r, k)) = (1 + o(1)) log r
r�k+1

m as m!1. (6)

The same asymptotic representation holds for any functions r = r(m) , k = k(m) , such
that ln r = o(ln m) .

As immediate corollaries we obtain the analogues of (2) for (3) and (4): for fixed
r > 3 ,

χol(Km�r) = (1 + o(1)) log r
r�1
m as m!1;

χol(Hm�r) = (1 + o(1)) logr m as m!1.

The structure of the paper will be the following. In the next section we will
discuss the connection of the list on-line colorings of multipartite hypergraphs with
extremal property B-type problems. In Section 3 we will give the proofs of the
obtained results.

2. Extremal property B-type problems

2.1. Connection with the property B problem

The close connection of the list colorings of complete multi-partite graphs
with the classical property B problem was realized by Erdős, Rubin and Taylor
in [5]. Recall that the property B problem is to find the value m(n) equal to
the minimum number of edges in an n-uniform non-2-colorable hypergraph. The
obtained quantitative relation between χl(Km,m) and m(n) is the following.

Claim 1. Suppose that n, m > 2 are integers.

1. If 2m < m(n) then χl(Km,m) 6 n.

2. If m > m(n) then χl(Km,m) > n.

These inequalities together with the known bounds for m(n) provide the asymptotics
for χl(Km,m) .
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The same approach was used in [9] and [10] for investigating χl(Km�r) and
χl(Hm�r) . For Km�r , the corresponding extremal value deals with panchromatic
colorings. A vertex coloring of the hypergraph H = (V , E) with r colors is said to
be panchromatic if under this coloring every edge of E meets every of r colors. Let
p(n, r) denote the minimum possible number of edges in a n-uniform hypergraph
that does not admit a panchromatic coloring with r colors. Kostochka showed [11]
that p(n, r) plays the same role for χl(Km�r) as m(n) for χl(Km,m) .

Haxell and Verstraëte considered another generalization of the property B
problem to obtain the asymptotics for χl(Hm�r) . They used the value m(n, r) , the
minimum possible number of edges in an n-uniform non-r-colorable hypergraph.

Finally, Shabanov and Shaikheeva [8] introduced the property that lies “be-
tween” r-colorability and panchromatic r-colorability. Let us denote [r] = f1, . . . , rg.
A mapping f : V ! �[r]

s

�
is called an s-covering by r sets, i.e. we assign s different

colors to any vertex of H. Furthermore f is called an s-covering by r independent
sets if for every i = 1, . . . , r, a vertex subset

Vi = fv 2 V : i 2 f(v)g

is an independent set in H. It is easy to understand that

� a 1 -covering by r independent sets is just a proper coloring with r colors;

� an (r � 1) -covering f by r independent sets is equivalent to a panchromat-
ic r-coloring (we can color a vertex with the remaining unassigned color).

The authors of [8] introduced the value c(n, r, s) , equal to the minimum possi-
ble number of edges in an n-uniform hypergraph that does not admit an s-covering
by r independent sets. They also proved the following quantitative relation between
c(n, r, s) and χl(H(m, r, k)) .

Claim 2. Suppose that n, m, r > 2 , 2 6 k 6 r are integers.

1. If rm < c(n, r, r� k+ 1) then χl(H(m, r, k)) 6 n.

2. If m > c(n, r, r� k+ 1) then χl(H(m, r, k)) > n.

By using Claim 2 and the bounds for c(n, r, s) , one can easily obtain the asymptotics
for the list chromatic number of H(m, r, k) .
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2.2. On-line analogues of the property B problem

The first on-line version of the property B problem was considered by Aslam and
Dhagat in [12]. Suppose n, N are positive integers and there are two players, Lister
and Painter. They play the following game Game2 (N, n) , which is parametrized by
two numbers: the cardinality of edges n and the number of edges N. Values of these
parameters are known to both players before the game. In each round, Lister reveals
one vertex and declares in which edges it is contained. He cannot add vertices to
edges which already contain n vertices. Painter must immediately assign any of two
colors (0 or 1) to the presented vertex. When all the vertices have been revealed (i.e.
all N edges contain n vertices each) Painter wins if there is no monochromatic edge
in the constructed hypergraph. Otherwise Lister wins.

Let mol(n) denote the minimum N such that Lister has a winning strategy
in Game2 (N, n) . Clearly, mol(n) 6 m(n) since for N > m(n) Lister can just
construct a non-2-colorable hypergraph. Aslam and Dhagat proved [12] that

mol(n) > 2n�1 . (7)

Duraj, Gutowski and Kozik showed [6] that the above estimate is sharp up to
a bounded factor:

mol(n) 6 8 � 2n. (8)

They also showed that mol(n) plays the same role for χol(Km,m) as m(n) for
χl(Km,m) . This connection together with the bounds (7)-(8) implies the result (2).

In the current paper we consider the following extension of Game2 (N, n) .
Suppose n, s 6 r and N are positive integers. There are two players, Lister and
Painter, who play the following game Game3 (N, n, r, s) , which is parametrized by
four numbers:

� n is the cardinality of edges;

� N is the number of edges;

� r is the total number of colors;

� s is the number of colors that should be assigned to every vertex.

Again the values of these parameters are known to both players before the game. In
each round, Lister reveals one vertex of a hypergraph and declares in which edges
it is contained. He cannot add vertices to edges which already contain n vertices.
Painter must immediately assign s colors from [r] = f1, . . . , rg to the presented
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vertex. When all the vertices have been revealed (i.e. all N edges contain exactly n
vertices each) Painter wins if the obtained s-covering is a covering by r independent
sets for the constructed n-uniform hypergraph. Otherwise Lister wins.

Let col(n, r, s) denote the minimum N such that Lister has a winning strategy
in Game3 (N, n, r, s) . We obtain the following generalization of Claim 2.

Lemma 1. Suppose that n, m, r > 2 , 2 6 k 6 r are integers.

1. If rm < col(n, r, r� k+ 1) then χol(H(m, r, k)) 6 n.

2. If m > col(n, r, r� k+ 1) then χol(H(m, r, k)) > n.

Lemma 1 is crucial in estimating the list on-line chromatic number of H(m, r, k) .
However we will also need the bounds for the extremal value col(n, r, s) , this question
will be discussed in the next paragraph.

2.3. New results in extremal problems for on-line colorings

The following lemma gives a reasonable lower bound for col(n, r, s) .

Lemma 2. For any n > 2 , r > s > 1 ,

col(n, r, s) >
rn�1

sn
. (9)

Note that for r = 2 , s = 1 the bound (9) coincides with the bound (7) for mol(n) .
Recall that col(n, r, s) does not exceed its “off-line” version c(n, r, s) . It was

shown in [8] by a probabilistic approach that for any n > r > s > 1 ,

c(n, r, s) 6
e

2
n2
�r
s

�n
ln

 
r

s

!�
1 +O

�
1
n

�
+O

�s
r

��
. (10)

So we can use the estimate (10) as an upper bound for col(n, r, s) . However, as it
was shown by Duraj, Gutowski and Kozik, much better results can be obtained for
on-line colorings. We will give some of them in the most interesting cases: s = 1
and s = r� 1 .

The value c(n, r, 1) is well-known in the literature as m(n, r) , the minimum
possible number of edges in an n-uniform non-r-colorable hypergraph. The problem
of finding m(n, r) was proposed by Erdős and Hajnal in the 60-s and since that
time it had been intensively studied. The reader is referred to the survey [13] for the
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detailed history. Clearly, m(n, 2) = m(n) and it is known that

c
� n

ln n

�1/2
2n 6 m(n) 6

e ln 2
4

n2 2n(1 + o(1)), (11)

where c > 0 is an absolute constant. The upper bound is due to Erdős [14] and the
lower is due to Radhakrishnan and Srinivasan [15]. Note that the above relations
imply that m(n) has a greater asymptotic order than its on-line analogue mol(n)
(see (7) and (8)). Similar estimates in the case of arbitrary number of colors r are
the following (the lower bound is due to Cherkashin and Kozik [16]):

c
� n

ln n

�(r�1)/r
rn�1 6 m(n, r) 6

e

2
n2rn ln r

�
1 +O

�
1
n

��
. (12)

Since mol(n, r) = col(n, r, 1) does not exceed m(n, r) the upper bound from (12)
holds for mol(n, r) . The following statement refines it significantly.

Proposition 1. For any r and n,

mol(n, r) 6 n(r� 1)2 � rn. (13)

For fixed r and growing n, the bound (13) is much better than the bound
(12) for m(n, r) . If r � ln n then (13) is only (ln n)4 times greater than the lower
bound in (12), so we can expect that m(n, r) and mol(n, r) do not have the same
asymptotic order. However, for r = 2 , the bound (13) is not good, a much stronger
result (8) is known.

In the opposite situation when n is fixed and r is large, the bound (13) also is
not the best possible since it is known that even m(n, r) has the order On(rn) . In
fact, Alon [17] showed that m(n, r) has the order rn for large r and small n. His
bounds were refined by Akolzin and Shabanov [18] as follows: if r > n then

c1 �
n

ln n
� rn 6 m(n, r) 6 c2 � n3 ln n � rn, (14)

where c1 and c2 are some positive absolute constants. We show that the value
mol(n, r) also have the order rn when r is large and n is fixed. The upper bound
clearly follows from (14), but the lower bound rn�1 obtained in Lemma 2 is not
enough. The next statement provides an improved bound.
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Proposition 2. Suppose r > n and let us denote a = bn�1
n rc and b = r�a = d rne.

Then

mol(n, r) > (n� 1)ban�1 + an�1 = Ω(rn). (15)

Finally, we discuss on-line panchromatic colorings, i.e. the problem of estimat-
ing col(n, r, s) when s = r� 1 . Let pol(n, r) = col(n, r, r� 1) . “Off-line” version
of the problem, the value p(n, r) , first appeared it the paper of Kostochka [11] and
since that time has been studied in several papers. For instance, it was shown in [9]
and [19] that

c1
1
r

� n

r2 ln n

�1/2
�

r

r� 1

�n
6 p(n, r) 6 c2n

2
�

r

r� 1

�n
ln r, (16)

where c1 , c2 > 0 are some absolute constants. Cherkashin improved [20] the upper
bound in (16) by a factor 1/r and gave a better lower bound for r large enough in
comparison with n.

The lower bound r�1

�
r

r� 1

�n
for pol(n, r) has been obtained in Lemma 2.

The upper bound from (16) can be refined in the on-line case as follows.

Proposition 3. Suppose n > r. Then

pol(n, r) 6 3r(r� 1)2n

�
r

r� 1

�n+1

. (17)

For fixed r and large n, the bound (17) is even closer to the lower bound in
(16) than to the upper one.

In the next sections we proceed to the proofs of the above new results.

3. Proof of Theorem 1

We start with establishing auxiliary lemmas: Lemma 1 and Lemma 2.

3.1. Proof of Lemma 1

We follow the ideas from [6] and [8].
1) We have to show that χol(H(m, r, k)) 6 n, i.e. we have to prove that Painter

has a winning strategy in Game1 (H(m, r, k), n) .
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Let W = W1t . . .tWr denote the vertex set of H(m, r, k) , where W1 , . . . , Wr

are the parts of the graph. Our strategy for Game1 (H(m, r, k), n) will use the
winning strategy for Game3 (rm, n, r, r� k+ 1) .

� Suppose X1 , . . . , Xi�1 have been already chosen. In round i Lister chooses
the set of vertices Vi � W n (X1 t . . . tXi�1 ) .

� We assume that we are playing Game3 (rm, n, r, r� k+ 1) and here Lister has
chosen the edges with numbers Vi to contain vertex i.

� Since rm < col(n, r, r � k + 1) then Painter has a winning strategy in
Game3 (rm, n, r, r � k + 1) . Let fej1 , . . . ,ejr�k+1g be the choice of colors
for the vertex i according to this strategy.

� Let fj1 , . . . , jk�1g = [r]/fej1 , . . . ,ejr�k+1g be a complementary set of colors.

� Painter’s choice of an independent set Xi will be the following:

Xi = Vi \
�
Wj1 t . . . tWjk�1

�
.

Since Xi is contained in a union of some k� 1 parts of H(m, r, k) then it will
be independent in H(m, r, k) by the construction of the hypergraph.

Suppose w 2 Wj is a vertex of H(m, r, k) . Everytime w is chosen by Lister
as an element of Vi in Game1 (H(m, r, k), n) , i becomes a vertex of an edge w in
Game3 (rm, n, r, r � k+ 1) . The winning strategy in Game3 (rm, n, r, r � k+ 1)
provides that after choosing n times the edge w there will be a vertex i 2 w such
that color j will not be assigned to i (otherwise the obtained covering will not be
a covering by independent sets). For such i, the independent set Xi will contain
all the vertices in Vi \Wj , i.e. w 2 Xi . Thus, every vertex of H(m, r, k) is colored
before it receives n permissable colors. The existence of the winning strategy for
Painter is proved.

2) We have to show that χol(H(m, r, k)) > n, i.e. Lister has a winning strategy
in Game1 (H(m, r, k), n) . Again our strategy will follow the winning strategy for
Game3 (m, n, r, r� k+ 1) .

Recall that W = W1 t . . .tWr denotes the vertex set of H(m, r, k) . Every Wj

has exactly m vertices, so let us denote Wj = fw1,j, . . . , wm,jg.

� Suppose V1 , X1 , . . . , Vi�1 , Xi�1 have been already chosen. In round i we have
to choose the set of vertices Vi � W n (X1 t . . . tXi�1 ) .

� Once again we assume that we are playing Game3 (m, n, r, r�k+1) and there
is a winning strategy for Lister since m > col(n, r, r� k+ 1) .
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� Now let a1 , . . . , aq 2 f1, . . . , mg denote the set of edges which this strategy
assigns to vertex i.

� Lister’s choice of a set Vi is the following:

Vi =

r[
j=1

q[
y=1

fway,jg n (X1 t . . . tXi�1 ) .

Roughly speaking, Lister chooses a set of rows in matrix kwl,jk, l = 1, . . . , m,
j = 1, . . . , r, and forms Vi as a set of all available elements in chosen rows.

Suppose Painter chooses Xi as an independent set in Vi . In fact, Painter
chooses the vertices from some k � 1 parts Wj1 , . . . , Wjk�1 , i.e. he chooses k � 1
columns in matrix kwl,jk and forms Xi as an intersection of Vi with these columns.
Such an answer can be interpreted as Painter’s choice of colors [r] n fj1 , . . . , jk�1g
for covering vertex i in Game3 (m, n, r, r� k+ 1) .

Let us understand that Lister always wins by this strategy in Game1 (H(m, r, k), n) .
The winning strategy in Game3 (m, n, r, r� k+ 1) provides that after some round
there will be a color j which will be assigned to any of n vertices of some edge
q 2 f1, . . . , mg. This corresponds to the following situation in Game1 (H(m, r, k), n) :

1. column j has never been chosen as a part of an independent Xi , when Lister
chooses row q,

2. vertex wq,j has not been colored,

3. vertex wq,j has been chosen n times as an element of Vi , i.e. it has n permissable
colors.

Hence Lister always wins by using the described strategy. Lemma 1 is proved.

3.2. Proof of Lemma 2

The proof follows the ideas from [12]. We have to prove that for N < rn�1

sn ,
Painter has a winning strategy in Game3 (N, n, r, s) . Let us describe it.

Suppose that the first l vertices v1 , . . . , vl have already been colored with s

colors each. For every color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed
vertices colored with j. Every edge A can be considered as a function of l, where
A(l) denote an edge subset revealed after round l. If A(l) � Vj(l) then A is
said to be currently monochromatic of color j. We assume that an empty edge is
monochromatic of every color. In this case we define the weight of A in color j as
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follows:

wj(A, l) =
�r
s

�jA(l)j
.

Painter’s strategy will be the following. Suppose that Lister states that a vertex
vl+1 is assigned to edges A1 , . . . , Aq . Then Painter calculates r numbers bj(vl+1 ) ,
j = 1, . . . , r, where

bj(vl+1 ) =
X

u:Au(l)�Vj(l)

wj(Au, l) =
X

A:A(l)�Vj(l),vl+12A
wj(A, l).

Suppose that bj1 (vl+1 ), . . . , bjs (vl+1 ) are the smallest s numbers among them. Then
Painter assigns colors j1 , . . . , js to vertex vl+1 .

Let us prove that this is a winning strategy. After every round l we can define
the total weight of currently monochromatic edges:

w(l) =
rX
j=1

X
A:A(l)�Vj(l)

wj(A, l).

We will show that w(l) > w(l + 1) , i.e. the total weight decreases. Indeed, let
j1 , . . . , js be the colors assigned to vertex vl+1 in round l + 1 . Then our strategy
implies that

w(l+1) = w(l)�
rX
j=1

X
A:A(l)�Vj(l),vl+12A

wj(A, l)+
sX

u=1

X
A:A(l)�Vju (l),vl+12A

wju (A, l+1) =

= w(l) �
rX
j=1

bj(vl+1 ) +
r

s

sX
u=1

bju (vl+1 ) 6 w(l)

since bj1 (vl+1 ), . . . , bjs (vl+1 ) are the smallest s numbers among bj(vl+1 ), j = 1, . . . , r.
Let us finish the proof. Suppose our strategy fails and at the end of the game

there is an edge A, which is monochromatic in color j. Then the total weight of the
monochromatic edges at the end of the game is at least (r/s)n . But at the beginning
the total weight is equal to rN which is smaller than (r/s)n , a contradiction.
Lemma 2 is proved.
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3.3. Completion of the proof

Let us deduce the asymptotics for the list on-line chromatic number of the
hypergraph H(m, r, k) . If we denote n = χl(H(m, r, k)) then Lemma 1 implies
that

col(n� 1, r, r� k+ 1) 6 m and col(n, r, r� k+ 1) > mr.

By using bounds (9) and (10) for col(n, r, r� k+ 1) we obtain that

(n� 2) ln
r

r� k+ 1
� ln(r� k+ 1) 6 ln m; (18)

ln m+ ln r < n ln
r

r� k+ 1
+ 2 ln n+ ln ln

 
r

r� k+ 1

!
+O(1). (19)

We assume that the function r = r(m) satisfies the condition ln r = o(ln m)
when m!1. Hence the inequality (18) implies that

lim sup
m!1

n ln r
r�k+1

ln m
6 1 + lim

m!1
2 ln r

ln m
= 1. (20)

Moreover, it follows from (18) that ln n = O(ln ln m) = o(ln m) . Thus from (19)
we get

lim inf
m!1

n ln r
r�k+1

ln m
> 1 � lim

m!1
O(ln r+ ln n)

ln m
= 1. (21)

Finally, from (20) and (21) we obtain the asymptotics for the list on-line
chromatic number of H(m, r, k) :

lim
m!1

χol(H(m, r, k)) ln r
r�k+1

ln m
= lim

m!1
χol(H(m, r, k))

log r
r�k+1

m
= 1.

Theorem 1 is established.

4. Other proofs

4.1. Proof of Proposition 1

The proof follows the ideas from [6]. We have to show that for N = n(r�1)2rn ,
Lister has a winning strategy in Game3 (N, n, r, 1) . The strategy will be the following.
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Suppose that the first l vertices v1 , . . . , vl have already been colored. For every
color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed vertices colored with j.
We divide the number of edges into r parts E1 , . . . , Er , with (r � 1)2nrn�1 edges
in every part. Every edge A again can be considered as a function of l, where A(l)
denote an edge subset revealed after round l. If A(l) � Vj(l) then A is said to
be currently monochromatic of color j. We assume that an empty edge A(0) is
monochromatic of color j if A 2 Ej . If jA(l)j = i, i = 0, . . . , n� 1 , then edge A
is said to be at level i after the round l. A monochromatic (j, i) -block is a set of
rn�i�1 currently monochromatic edges of color j, which are currently at level i.

Lister’s strategy can be described as follows.

� For every color j = 1, . . . , r, he chooses the largest i = i(j) such that there
exists a (j, i) -block Bj .

� He chooses the union B1 t . . .tBr as a set of edges that will contain the next
vertex vl+1 .

Clearly, Lister wins if after some round there is a monochromatic edge at level n.
The total number of blocks at the beginning is equal to r � (r � 1)2nrn�1 /rn�1 =

= r(r� 1)2n. For any Painter’s choice of color for vl+1 , the total number of blocks
remains the same. Indeed, for chosen color the number of blocks of this color will
increase by r � 1 (plus r blocks on the next level minus 1 chosen block on the
current level) but the number of blocks of any other color will decrease by 1 .

The game continues until there is no monochromatic blocks in some color
(after that Painter can always choose this color for all the remaining vertices) or
Lister wins. Suppose the first situation appears. It implies that after some round
there is no monochromatic blocks, say, of color 1. In every other color there can be

1. at most r� 1 monochromatic blocks on any level from 1 to n� 2 (we always
use the block on the largest level);

2. at most r monochromatic blocks on level n� 1 ;

3. at most (r� 1)2n� 1 blocks on level 0 .

Thus the total number of blocks will be at most

(r� 1)
�

(r� 1)(n� 2) + r+ (r� 1)2n� 1
�
= (r� 1)2 (n� 2 + 1 + (r� 1)n)

= (r� 1)2 (rn� 1)

which is less than r(r � 1)2n, a contradiction. We have shown that the number of
blocks should be constant. Thus Lister always wins.
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4.2. Proof of Proposition 2

We follow the proof of Alon from [17]. Suppose N < (n � 1)ban�1 + an�1 ,
we have to show that Painter has a winning strategy in Game3 (N, n, r, 1) . The first
part of the strategy will be the same as in Lemma 2.

Suppose that the first l vertices v1 , . . . , vl have already been colored. For every
color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed vertices colored with j.
Every edge A can be considered as a function of l, where A(l) denote an edge subset
revealed after round l. If A(l) � Vj(l) then A is said to be currently monochromatic
of color j. We assume that an empty edge is monochromatic in every color. In this
case we define the weight of A in color j as follows:

wj(A, l) = ajA(l)j.

Painter’s strategy will be the following. Suppose that Lister states that a vertex
vl+1 is assigned to edges A1 , . . . , Aq . Then Painter calculates a numbers dj(vl+1 ) ,
j = 1, . . . , a, where

dj(vl+1 ) =
X

u:Au(l)�Vj(l)

wj(Au, l) =
X

A:A(l)�Vj(l),vl+12A
wj(A, l).

Suppose that dq(vl+1 ) is the smallest number among d1 (vl+1 ), . . . , da(vl+1 ) .

1. If dq(vl+1 ) < an�1 then Painter colors vl+1 with color q.

2. If dq(vl+1 ) > an�1 then Painter colors vl+1 with any of the colors from
fa+ 1, . . . , rg which have not been used (n� 1) times.

3. If dq(vl+1 ) > an�1 and every color from fa+1, . . . , rg have been used (n�1)
times then Painter colors vl+1 with color q.

If Painter follows the second alternative then vertex vl+1 is said to be special.
Let s(l) denote the number of special vertices after round l.

Let us prove that this is really a winning strategy. After every round l we can
define the total weight function as follows:

w(l) =
aX
j=1

X
A:A(l)�Vj(l)

wj(A, l) + s(l)an.

We will show that w(l) > w(l+ 1) , i.e. the total weight decreases. Indeed, let q be
a color assigned to vertex vl+1 in round l + 1 . If vl+1 is not a special vertex then
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our strategy implies that

w(l+ 1) = w(l) �
aX
j=1

X
A:A(l)�Vj(l),vl+12A

wj(A, l) +
X

A:A(l)�Vq(l),vl+12A
wq(A, l+ 1) =

= w(l) �
aX
j=1

dj(vl+1 ) + adq(vl+1 ) 6 w(l)

since dq(vl+1 ) is the smallest number among dj(vl+1 ), j = 1, . . . , a. If vl+1 is
a special vertex then

w(l+ 1) = w(l) �
aX
j=1

X
A:A(l)�Vj(l),vl+12A

wj(A, l) + an =

= w(l) �
aX
j=1

dj(vl+1 ) + an 6 w(l)

since every dj(vl+1 ), j = 1, . . . , a, is at least an�1 .
Now let us finish the proof. Suppose our strategy fails and at the end of the game

there is an edge A, which is monochromatic of color j. Clearly, j 2 f1, . . . , ag,
because every color from fa+ 1, . . . , rg can be used only n � 1 times. Moreover,
since the last vertex of A was assigned a color from f1, . . . , ag there is already
(n � 1)b special vertices. So the total weight at the end of the game is at least
an+(n�1)ban . But at the beginning the total weight is equal to aN which is smaller
than an + (n� 1)ban , a contradiction. Hence Painter always wins. Proposition 2 is
proved.

4.3. Proof of Proposition 3

The proof follows the general approach of the proof of Proposition 1. We
have to show that for N > 3r(r� 1)2n

�
r
r�1

�n+1
, Lister has a winning strategy in

Game3 (N, n, r, r� 1) .
Let us divide the number of edges into r parts E1 , . . . , Er with exactly

3n(r� 1) � an edges in every part, where the value an is defined as follows:

a0 = 1, am =

�
r

r� 1
am�1

�
, m = 1, . . . , n.

Clearly, an 6
r
r�1an�1 + 1 . Thus an 6

nP
i=0

�
r
r�1

�i
6 (r � 1)

�
r
r�1

�n+1
. Since

N > 3rn(r� 1) � an the division can be made. We omit all the remaining edges.
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Suppose that the first l vertices v1 , . . . , vl have already been colored. For every
color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed vertices which are not
colored with j. Every edge A is considered as a function of l, where A(l) denote
an edge subset revealed after round l. If A(l) � Vj(l) and A 2 Ej then we say
that A is not colored with j, empty edge also satisfies this property. If jA(l)j = i,
i = 0, . . . , n � 1 , then edge A is said to be at level i after round l. Finally,
a (j, i) -block is a set of an�i edges not colored with j at level i.

Lister’s strategy can be described as follows.

� For every color j = 1, . . . , r, he chooses the largest i = i(j) such that there
exists a (j, i) -block Bj .

� He chooses the union B1 t . . .tBr as a set of edges that will contain the next
vertex vl+1 .

Clearly, Lister wins if after some round there is an edge at level n, because
such an edge will not meet some of the colors. The total number of blocks at the
beginning is equal to 3rn(r�1) . For any Painter’s choice of color for vl+1 , the total
number of blocks cannot decrease. Indeed, for chosen color the number of blocks
not colored with this color will decrease by 1 but since am > (1 + 1/(r � 1))am�1

the number of blocks not colored with any other color j will increase by at least
1/(r � 1) (minus one block on the current level i(j) , plus r/(r � 1) blocks on the
next one). Thus, the total number of blocks does not decrease.

The game continues until there is no blocks not colored with some color or
Lister wins. In fact, in the first case Painter does not necessarily win, but we will
show that even such situation is impossible. Suppose it appears and there is no blocks
not colored with some color q. Due to the strategy for every j 6= q, the number of
blocks not colored with j

� is at most 3 on every level form 1 to n� 1 (since we always choose the largest
level and add at most 2 new blocks to the next level);

� is at most 3n(r� 1) � 1 on level 0 .

Hence the total number of the remaining blocks is at most

(r� 1) (3(n� 1) + 3n(r� 1) � 1) = (r� 1) (3nr� 4)

which is less than 3nr(r � 1) , a contradiction, since we have shown that the total
number of blocks cannot decrease. Thus Lister always wins.
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5. P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conference
on Combinatorics, Graph Theory and Computing, 1979, Congr. Numer, 26 (1980),
125–157.

6. L. Duraj, G.Gutowski and J. Kozik, Chip games and paintability, Electronic journal of
combinatorics, 23:3 (2016), Paper № P3.3.

7. N.Gazit and M. Krivelevich, On the asymptotic value of the choice number of complete
multi-partite graphs, Journal of Graph Theory, 52 (2006), 123–134.

8. D. A. Shabanov and T. M. Shaikheeva, On the list chromatic number of the complete
multi-partite hypergraphs and multiple coverings by independent sets, preprint,
https://mipt.ru/education/chairs/dm/laboratoriya-prodvinutoy-kombinatoriki-i-setevykh-
prilozheniy/preprinty

9. D.A. Shabanov, On a generalization of Rubin’s theorem, Journal of Graph Theory, 67:3
(2011), 226–234.
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