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Our paper is devoted to the description of the complete structure of two-
dimensional Dirichlet spectrum. In Section 1 we recall well-known results concern-
ing one-dimensional Dirichlet spectrum. In Section 2 we formulate our results on
two-dimensional spectrum. The rest of the paper deals with proofs of our results.

1. One-dimensional Diophantine approximation

Let a € R be an irrational number. We consider the irrationality measure function

Yalt) = min, Jred]
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(here min is taken over integers ¢ and || - || stands for the distance to the nearest

integer). The one-dimensional Dirichlet spectrum

D={MNeR|JFacR: limsupt-1,(t) = A}

t—=00

was considered by many mathematicians. It has a quite difficult structure. Sze-

keres [9] showed that
5 5
D C + \/_, 1
10

(see also a paper by Davenport and Schmidt [1]). It is known that close to the
point 5 + \/5/ 10 Dirichlet spectrum is discrete and there exists d, < 1 such that
[ds, 1] C D (see works by Lesca [6] and Divi§ and Nowak [2]). Ivanov [3—5] showed

that
4+ 3+4/3
mes <ID)ﬂ |:O, %[)) =0,
and
i e 3W5 -5 384+ 6v2
2 49
for

d* = inf{d | D > [d, 1]}.

The complete structure of ID is probably not known yet.
All the results mentioned above are obtained by means of continued fractions
theory. For @ we consider its continued fraction representation o = [ag; a1, aa, .. .|

Pn . .
and convergents — = [ay; a1, @, . .., ay]. In terms of continued fractions one has
n

wa(t) = ||qnaH for g, <t < quyi,

and

D={AeR|Ja€R: limsup g,41 - |lgne|| = A}
n—00
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The main tool for the study of Dirichlet spectrum’s structure is the equality

Qoo lguel| = ————.
I+ —
Q20 4
where a, = [an; ani1, Gnya, -- -] and o = [ay; an_y, Gpa, - ., a1].

Some one-dimensional and multi-dimensional results related to Dirichlet spec-
trum are discussed in a survey by Moshchevitin [8].

2. Two-dimensional Dirichlet spectrum:
formulations and notation

In the present paper we consider the Euclidean norm, for simplicity. Probably the
similar results are true for other norms.

DEfiNITION 1. For a vector v = (vy,v;) € R? we define the irrationality measure
function with respect to Euclidean norm as

() = _min +/llgui]? + [lgual*

1<g<t, g€

DEefiNITION 2. Two-dimensional Dirichlet spectrum with respect to Euclidean norm is
defined as

DZZ{AERHvERZ: limsur)t'ﬂﬁs(t):)‘}-

t—=00

From Minkowski’s convex body theorem it follows that

4
D, C [0,—|.
s
Mahler’s theorem on the critical determinant of the three-dimensional cylinder [7]
gives

mel 2]

In the present paper we prove the following statement.
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THEOREM 1. We have

DEfiNnITION 3. The sequence
Z W, =(gn,Pn) €Z°, n >0,

is the sequence of the best approximation vectors for v € R? with respect to Euclidean
norm if

1) g=1;
2) g1 = min {g € N | y/lgo? +1lguall” < v/llgo? + g’} (n>0);
3) Pn = (pn,lspn,2) : Hq’va]H - \anl _pn,l|s anUZH - |an2 _pn,2| (n > 0)

Remark 2.1. The sequence of the best approximation vectors may be not defined
uniquely, in general. However the sequence {g,}X  is defined uniquely, whereas
the sequence {p,}°, may be not uniquely defined.

Remark 2.2. The sequence of the best approximation vectors may be finite or
infinite. However in the present paper we consider the case of infinite sequences
only.

Remark 2.3. The function t,(t) is a piecewise constant decreasing function and

U(t) = Vlgnvi|? + llgaval?* = \/|(In?11 — P>+ 1gnv2 — Prpl? =

= |QnV—Pn|, fOIQn<t<Qn+1-

PROPOSITION 1. One has

D, = {)\ €R|IveR?: limsup gnyi - |guV — pul® :}\} ,

n—o0

where W, = (qn, Pn) € Z°, m > 0, is the sequence of the best approximation vectors
with respect to Euclidean norm for v € R?.

Given v e R?, @ > 0 and R > 0, we define the cylinder I = TI(v, @, R) by

(. Q. B) = {(a.0) € Ex &’ [ ¢ € [0.Q]. |ov—p| < R}.
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Let vol(TT) = TQR? be the volume of TI, and let int IT be the set of interior points
of II. By OII we denote the boundary of II.
Put

ﬁ:{(q,p)eRszlqER, qu—pliR}.

We define the main facet of 11 by
{@n eRxR 1q=Q. lov—pl < R}.

We define the axis vector for TI as any vector of the form t- (1,v) € R x R, ¢ > 0.
We define the non-principal boundary of 11 as

aﬁ:{(q,p)eRxRﬂqe(o,Q), \qv—plzR}-

The continuation of the non-principal boundary of II is defined as

{(q,p)eRszlqER, qu—pIZR}-

By the length of the cylinder II we mean the value of Q. By the radius of II we
mean R.
For v € R? and the sequence

Z:Wy = (gu,Pn) ENXZ’, n >0,
we define Ry =1, and Ry, = |gu—1V — Pp—i], I, = I1(V, g, Ry),
V,, = vol(II,) = 7qy -+ |gu_1V — pn_1|?, for n > 1.

PROPOSITION 2. One has

1
D, = {,\ ER|IvER’: limsup =V, | = ,\} ,
n—oo T
where the sequence of vectors W, = (¢, Pn) € 73, n >0, is the sequence of the best
approximation vectors with respect to Euclidean norm for v € R?.

THEOREM 2. Take )\ € [0, 2/ﬁ]. Then there exists an uncountable set of vectors
v € R? such that

1
lim 7Vn+l =\

n—oo T
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Of course Theorem 1 follows from Theorem 2. In fact we prove a more general
result.

THEOREM 3. Consider an arbitrary sequence {A,}o° | of subsegments for the segment
[0, 2/ \/§] . Then there exists an uncountable set of vectors v € R? such that

1
-V, eA,, VnéeN
s

It is clear that Theorem 2 follows from Theorem 3.

PROPOSITION 3. The sequence
ZiWn:((In,pn)EZ3, n=0
is the sequence of the best approximation vectors with respect to Euclidean norm for
v € R?, if and only if
1) @ =1;
2) (intl,)NZ=2 (n=>1);

3) Gop1>qn (n=0);
4) Ry <R, (n>0).

Remark 2.4. One has w,_;,w, € OII,. Moreover the point w,_; belongs to the
non-principal boundary of II,,. The point w,, belongs to the main facet of II,,.

3. Proof of Theorem 3: inductive procedure
We construct a sequence of vectors
Z W, = (gupn) €7, n>0,
satisfying the following properties 1)—6).
For simplicity we use the following notation.

p
Yn = q_"a qd-1 = 05 p-1 = (17 O)> W_1 = (q—l, pfl)a
n

for 0 < v < nput R, =|qu—1/qPn — Pv—1|, 1% = (Vp, q,, RY), V¥ = vol(I1}).
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{(0,0,0), wy1, Wy, W, — W, 1} ,v=n2>1;

£(0,0,0), w1, w,}, I<v<n,

1) I4N7Z =

and w,_; belongs to the non-principal boundary of the cylinder 11}, and w, —w,_;
belongs to the non-principal boundary of II% (with ¥ = n), whereas w, belongs to
the main facet of I1};

2) gn>2¢p1 (n=1);

1
3) R < ERZ_I (I1<v<n);

4) %Vny €intA, (1<v<n);
5) vy — Vpot] < % (n>1);
6) |R, — R |<i (1<v<n—1).
n—1 on SPYS
We construct the sequence Z by induction in n.
A. The base of induction for n = 0.
Define wy as follows. Put gg = 1, py = (0,0). We see that for n = 0 all the
conditions 1)—6) are empty, and there is nothing to check.
B. The inductive assumption. We suppose that the vectors wy, ..., W,_; satis-
fying 1)—6) are already constructed.
C. Inductive step. We construct w,, and prove that it satisfies conditions 1)—6).
Let m,_; be the completely rational plane in R? containing the points w,_,,
Ww,—> and the origin 0.
Let 7/,_, be a parallel to m,_; completely rational plane, neighbouring to m,_;.

Remark 3.1. There are two different completely rational parallel planes neighbouring
to m,_1. As m,_, we may take any of these two planes. This remark is of importance
for the proof of uncountability of the set of desired vectors v € R2.

4. A linear transformation
Let G be the linear transformation R> — R? defined by the following condi-
tions a)—f).

a) G(o) =0, where 0 = {z = 1};

b) G preserves Euclidean distances between points in the plane o;
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c) G Wn,|) = (anl’ 0, 0);

e)
f)

(
d) G(mn-1) ={z=0}
(

G(m!,_) ={z=h} and h > 0;

G(Wp—2) = (gn-2,d,0) and d > 0.

For the sake of simplicity we use the following additional notation.

4= Gn-1, Wn—1 = (qn=1,Pn=1) = G(Wn=1) = (¢,0,0), T =Ty = G(mp-1),

(i)
(ii)

(iii)

(iv)

)
(vi)
(vii)

(viii)

T =T =G ), T=Tp, ™ =Tp_1, A= 7K = G(A), T =mnNA,

I'=7nAT=GI)=7nAT =cI)=7nA.

We observe the following properties.

7 and 7 are neighbouring completely rational planes with respect to the lattice
K, and h is just the distance between them.

The lattice T is two-dimensional and detT’ = 1/h. All the points of the
lattice T lie on parallel lines I, = {(x, y, 2) | y = kd, z = 0} (k € Z) with the
step ¢q. That is, the distance between the neighbouring lines is equal to d, the
parallelogram generated by w,,_; and w,,_, is empty.

The lattice T" is two-dimensional and det T = % All the points of the lattice T"
lie on parallel lines I}, = {(z,y,2) |y = kd+ b,z = h} (k € Z, and b is
a certain real number) with the step ¢. The distance between the neighbouring
lines is equal to d.

det G = +1.
detA = qghd = 1.
G does not change the coordinate in the axis x.

G transforms any cylinder II into a cylinder = G(I). And the radius, the
length and the volume of the cylinder remain the same.

ﬁnfl - (07 0)

Now we reformulate the problem of constructing the vector

Wy, = (an pn) € N x Zz~

We must construct the sequence of vectors

WO = (q()”ﬁ())’ ce ,’V‘Vn = (qn,’ﬁn) € A,
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with the properties 1)—6) below.

For 1 < m < n we use the following notation. Put
Vi = —, q-1 :()3 P-1 :(130)5 (q—la’ﬁ—l):G((q—hp—l))'

For 0 < v < m put R}, = |¢y1/@mPm — Po-1l = €0 1/@mPm — Po-1l, ﬁfn =
I (Vn, 4, R7)-
l) ﬁ,,'/n ﬁK _ ‘{(O’ 0, 0)’ Wy—1, Wy, Wy _WV—1}9 v=m;

{(Oa 05 0)»661/71» WI/}» 1 < v < m,

and W,_; belongs to the non-principal boundary of ﬁ,"n, W, — W,_; belongs to the
non-principal boundary of II% (with v = m), and W, belongs to the main facet
of I1%,;

2) qm>2Qm—l (m> ]);

1
3) Ry, < ER;’{I (I<v<m);

1
4y —Vy eintdh, (1<v<m);
71'

1
5) |Vm*Vm,1| < 2_m (m> 1),
v v 1
6) |Rm_Rm—l‘<2_m (lgl/ém—l)

Meanwhile the vectors

W0 = (q()v ii()) = G(W()), cees anl = (Qn—l,ﬁn—l) = G(wnfl)

are supposed to be constructed. And we suppose that they satisfy 1)—6), due to the
properties of the transformation G.

So we must construct W,, = (gn, Pn) € K, such that the properties 1)—6) are
satisfied.

If we construct such a vector W,, we immediately put w, = G*'(Wn). This
completes the construction of the vector w,.
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5. Parametrization with auxiliary sets A;

Now we define three auxiliary sets Ag, A;, A, C R3. We shall denote elements of
the sets Ay, A and A, by (g, Yo, 20), (21, Y1, 21) and (23, Y2, 23) respectively. Put

A() = {(1‘0, Yo, Z()) € R3 | o =¢q,Yo > 0, 20 > 0}

For any point of Ay we consider the cylinder

Yo =20 qh ) )
I1(0)(zo, Yo, 2 :H((—,—),—, Yo+ 25 ) -
(O)@0. o, 20 rab IR VE

Remark 5.1. The cylinder IT = I1(0)(zo, Yo, 20) is uniquely defined by the following
properties.
(i) (zo, Yo, 20) is an axis vector for II;
(ii) the center of the main facet of the cylinder belongs to the plane 7;
(iii) the point W,_; = (g, 0,0) belongs to the continuation of the non-principal

boundary of II.

Put
A ={(z,y1,2) €R’ |z, >0,y >0,z = h}.

For any point of A; we consider the cylinder

_ yi h a /o
ne o) -1 (20 o Ly em)).

Remark 5.2. The cylinder II = II(1)(z, y1, #1) is uniquely defined by the following
properties.
(i) Vector (zy,y1, 21) is an axis vector for IT;
(ii) the center of the main facet of the cylinder belongs to the plane 7;
(iii) the point W,_; = (g, 0,0) belongs to the continuation of the non-principal

boundary of II.

Put
A2 = {(Z‘z, Y2, 22) c R3 | Ty > 0, Y > 0, 2y = 0}
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For any point of A, we consider the cylinder

Ty QY ) Mas+4%) an
2 27 2 2 k) ’
Ty +q Ty+q a2 /22 + @

Remark 5.3. The cylinder IT = TI(2)(x, ¥, 2,) is uniquely defined by the following
properties.

Q) (@2, 2. 22) = 11 (

(i) The line {y = y,, z = 0} is tangent to the continuation of the non-principal
boundary of II at the point (z,, Y2, 22);

(ii) the center of the main facet of the cylinder belongs to the plane 7

(iii) the point W,_; = (g, 0,0) belongs to the continuation of the non-principal
boundary of II.

Now we define a triple of bijections between the sets Ag, A; and A, in the
following way:

qh h(z2 + ¢
Lo =4¢, xlzz—, 5312%,
0 2
Yo = @, hyo ha,
T Y= —"» Yyi=—">)
_ah “
Zo—xl, z1=h; 21 = h;
a:zzqhﬂ, Ty =¢q, mzzqzﬂ,
T 0
_ayi +H) yo = 22 Yo + %
Yo="— " x5+ ¢ Yo=—,
zih v %0
2 =0; Zo:x%+q2; 2 =0

Remark 5.4. The diagram

Ay <— A
A,

related to our triple of bijections between the sets Ay, A; and A, is commutative.
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Remark 5.5. The cylinder defined by the corresponding elements of the sets Ay, A
and A, remains invariant, that is

T1(0) (20, Yo, 20) = TL(1)(z1, Y1, 21) = T(2)(22, Y2, 22).

Remark 5.6. In the sequel, we identify the corresponding elements of the sets Ay, 4,
and A,, for simplicity reasons. We shall consider the sets Ay, A; and A, as different
parametrizations of the same family of cylinders.

The following statement can be easily verified.

LEMMA 1. Suppose that v > 0. Then the following conditions are equivalent

() o = qlyi +h%)

! 2rh
(ii) y» =2r;

R+ 2
(i) y3 + (20 —7)? = 1? (or D0 2r) )
20
They define a family of cylinders of the volume V =V (r) = 2mrgh.
. . 27r

Remark 5.7. The equation V = V(r) = 27rgh may be rewritten as V(r) = -

We take 7 to satisfy A\* = 2r/d € intA,, in such a way that the number 2rh,/d>
is irrational.
Then we define the set

By={(22,92,2) €R’ 25> 0,,> 0,2, > 0, T1(2) (2,45, 22) N T = {0, £W,,_; }}.
Remark 5.8. If (2,, 2, 22) € By, then int I1(2)(z5, ya, 22) N I'=o.
Remark 5.9. B, is an open set in A,.
Remark 5.10. If (25, Y2, 23) € By U 0By, then 0(z,, ¥, 25) € B, V6 €(0,1).
Remark 5.11. If (z,, ¥», 22) € B, then (m—l—k%, Y2, zz) €B, Yk>0,k€eZ.

Moreover the transformation(z,, ¥2, z2) — (mz + k%, Y2, zz) Vk>0,keZ

preserves the lattice T and change the ellipse int ﬁ(2)(z2, Y2, 23) NT into the ellipse
intfi(2) (zz n k%, v, zz) n.
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Remark 5.12. There exists 0 < a < ¢ such that (a, d, 0) € T.

LEMMA 2. There exists € > 0 such that for any integer k > 1 the set B, contains
a rectangle bounded by the lines

Y = N'd;

Nde

1 5
A (a+ (k+ 5) q) +e
N 1
Ty = A (a+ <k+5) q);
N 1
T = A (a—l—(k—i—i) q) — €.

PRrROOF OF LEMMA 2 One can easily see that

Yy = )\*d—

2 (a,d,0)+(a+gd0) 2
; -

1
(a -+ Eq, d, 0) S 832,

S
S

S0
1
A (a + % d, 0) € B,.

The set B, is open. We see that

1 0
Je>0 VOe[-¢c,e] X (a+§q+ﬁ,d,0) € B,.

We use the properties of the set B, to see that

1 0
A (a+(k+5)q+;,d,0) €B,, VYk>0.

So the triangle with vertices (0,0,0), A* (a + (k—l— %) q- % d, 0) and
A* (a + (k: + %) q+ 5. d, 0) (without the vertex (0, 0, 0)) is contained in B;.

One can see that this triangle contains a rectangle bounded by the lines

1 = N'd;



18 Renat K. Akhunzhanov (Astrakhan), Denis O. Shatskov (Astrakhan) [254

Ade )
M(a+ (k+13)q) +¢

1
=N (a+<k+5) q);
. 1
Ty =A (a—i—(k—l—i) q) — €.

Lemma is proved. O

Y =A'd—-

The family of rectangles from Lemma 2 may be represented as a family of
domains, in terms of the parametrization related to the set A;. From this point of
view it will be a family of closed domains bounded by the curves

o = AW R
! Adh
N aly; + A% ,
T = 5

\rd — Ade b

1

A* (a+ (k+§) q) +€

] h

Y= (a+ (k+—) q) =;

2 q
1 h h
o (e ()i
2 g q

Remark 5.13. In such a domain the value of y; and k satisfy y; <k (k — +00).

The first two equations for the boundary in A;-parametrization give parabolas
without intersection and with a common axis. For k large enough the distance
between the branches of these parabolas becomes arbitrary large, supposed that the
scale of the value of y is fixed. That is

q(yi + 1?) Calyi+ )
Adh

Ned - A*de b

(o (1))




255] On Dirichlet spectrum 19

2 h2 1
= q(y)i*Zh, ) 1| =400 (k— +00).

€
1
A* (a+ (k+5) q) +€

In particular, for large k it becomes larger than 2q.

1-—

Remark 5.14. One can show that

alyi + 1) Calyi + 1)
Xedh

=<k (k= +0).

Ned — Nde b

()

The last two equations for the boundary in A;-parametrization determine two lines

parallel to the coordinate axis 0z. The distance between these two lines is eh/q, and
this distance does not depend on k.

So in terms of A;-parametrization our rectangles are the pieces of strips of the
constant width bounded by the two parabolas. They lie in the plane 7 along the 0z
axis, and they appear periodically with the period A*h = (2rh)/d along the Oy axis.

The points of the lattice T" in 7 should lie on the lines parallel to 0z. They
appear periodically with the period q. The distance between the neighbouring lines
of this family is equal to d. (To see this we explore properties of G.)

By our choice of r we see that the ratio @/d is irrational. So there are
infinitely many possibilities to choose k in such a way that the corresponding piece
of the strip in the set A; has a least one point of T inside. Such a value of the
parameter k we define as an admissible value.

Now for an admissible value of k we take one of the corresponding points
of . In the sequel we say that such a point from T corresponds to the admissible
and large k .

Also for an admissible large k we have the corresponding point from Ay, A;
and A,.
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Remark 5.15. If k is admissible and tends to infinity then the value of z; for the
corresponding (z1,y;, z1) € A, tends to infinity.

Now we consider the family of rectangles from Lemma 2 in terms of Aj-para-
metrization. Their boundaries are determined by the lines

2+—( 1A*d)2 (IA*d)2~
Yo 20 ) =\3 5

1 N Ade
vt lz0—= [ Ad- =

1
2 A* <a+(k—|—§)q)+e

1 Ade
= = A*d - ;
2

(o (00
e (1))
e (1)) )

The rectangles from Lemma 2 in terms of Ag-parametrization are domains in the

2

plane {z = ¢}, bounded by two rays (with the common origin 0) and two circles.
These circles have the unique common point W,,_;. One of these circles lies inside
another one.

6. Proof of Theorem 3: we complete the inductive step

Now we show that thee exists an admissible and large enough k such that the
corresponding vector W, satisfies the conditions 1)—6).

For an admissible and large enough k the value of z, in (z,y, z) € A4,
increases and becomes unbounded. So we get 2).

One can easily check that for an admissible and large enough k, the triple
(0, Yo, 20) € Ag belongs to an arbitrarly small neighbourhood of W,,_;. It follows
that [V, — V,—i| may be arbitrarly small. So we get 5).
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Put R(v) = |gy—1v—"P,—1|. Then R(¥,—;) = R!_,, R(V,) = R},. For an
admissible and large k the value [V, —V,_;| becomes arbitrary small. But R(v)
depends continuously on v. So |Rj — R’_,| becomes arbitrary small, and we
have 6).

Now we prove 3) for v = n.

As Pr_1 = (0,0) we have 1i(r(1)10) R(v) = 0. So for an admissible and large k the
v—=(0,

value of R? tends to zero. At the same time the value of R?! tends to a positive

constant R'”|. In particular it means that we have 3) with v = n.

Suppose that v < m. Then for an admissible and large k the value of RY
tends to R”_,, and the value of R%~! tends to R“Z|. By the assumption we have
RY_, < 1/2RVZ|. This shows that for an admissible and large k we also have
RY < 1/2R%~'. This gives 3).

The condition 4) for ¥ = n is true by our construction.

Suppose that v < n. Then we may take an admissible k large enough, and the
value of V7 will tend to V. By the assumption we have %VT’L’_I € intA,. Thus, for
an admissible and large k we have the inequality %V,’{ € intA,. So we get 4).

Now we prove 1) for v = n.

By our construction we have 11" N T = {(0,0,0),W,_1}. As the cylinder I
has a symmetry with respect to the lattice A we have ﬁﬁ NI = {W,, W, —
— W,_1}. But for an admissible and large k the value of R? tends to zero and
ﬁg NA = {(0,0,0), Wy_1, Wy, Wy, — Wy, }. So we have 1) for v =n.

Now we prove 1) for | <v=mn—1.

By the assumption we have

ﬁz:: N K = {(07 01 0)3 WTL—Z’ Wn—la WTL—I - Wn—Z}'

Here W,,_, belongs to the non-principal boundary of ﬁg:},

to the non-principal boundary of ﬁﬁ:i At the same time W,_; belongs to the main

and W,,_; —W,_, belongs

facet of ﬁg:} By the definition of ﬁﬁ‘l the point W,,_, belongs to the non-principal
boundary of ﬁﬁ". For an admissible and large k the cylinder ﬁﬁ’l tends to the
at the same time the point W,_; lies in the main facet of ﬁz”.
We take an admissible k& and see that the point W,,_; — W,,_, is not in the cylinder
ﬁZ*I, as the corresponding triple (g, yo, 29) € Ay has positive coordinates. So for
admissible and large k we have II" ' N A = {(0,0,0),W,_;,W,}. We get 1) for
1<v=n-1.

n—1
n—1>

cylinder il



22 Renat K. Akhunzhanov (Astrakhan), Denis O. Shatskov (Astrakhan) [258

Now we prove 1) for | <v<n— 1.
By the inductive assumption we have ﬁLl NA = {(0,0,0),W,_;,wW,}. Here W,

v
n—1°

belongs to the non-principle boundary of II and W, belongs to its main facet.

By the construction w,_; belongs to the non-principle boundary of ﬁz. For an

v
n—1°

time the point W, lies in the main facet of ﬁ,”,. Thus, for an admissible and large &
we have IIZ N A = {(0,0,0),W,_;,W,}. We get 1).
The inductive construction is described completely.

admissible and large k the cylinder ﬁ;’, tends to the cylinder iI and at the same

By our construction of the sequence Z and the Cauchy criterion there exists
the limit lim v, = v.
n—00
Now we prove that the sequence

Z:wn:(qn,pn)EZ3, n>0

is just the sequence of all best approximation vectors to v € R2.
Indeed, we have

(i) go = 1 by the construction;
(ii) (intIl,)NZ* = @ (n > 1) by the construction, as IT, = lim II%;

n—00

(ili) gn+1 > gn (n = 0) by the construction;
(iv) Ryt+1 < R, (n > 0) by the construction.

The uncountability of the set of the vectors v € R? can be obtained as follows.
At each step of the inductive process we apply Lemma 2. Here we can use both two
neighbouring planes 7/,_,. We use both opportunities and get uncountably many
ways to construct a limit vector v € R?. One can easily see that all the vectors
v € R? constructed are different.

Theorem 3 is proved. 0
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