Reprint from

ISSN 2220-5438

Moscow Journal

of Combinatorics and Number Theory

МФТИ

2017

Volume 7 • Issue

Moscow Journal

of Combinatorics and Number Theory

Volume 7 • Issue 3

2017

Moscow Journal of Combinatorics and Number Theory 2017, vol. 7, iss. 3, pp. 78–80, [pp. 264–266]

CORRIGENDUM

Corrigendum to "On the maximum number of consecutive integers on which a character is constant"

Enrique Treviño (Illinois)

Keywords: Character Sums, Burgess inequality AMS Subject Classification: 11L40, 11Y60 Received: 01.08.2017

Theorem 1 in [1] should be corrected to the following:

THEOREM 1. If χ is any non-principal Dirichlet character to the prime modulus p which is constant on (N, N + H], then

$$H < \left\{ \frac{\pi}{2} \sqrt{\frac{e}{3}} + o(1) \right\} p^{1/4} \log p,$$

where the o(1) terms depends only on p. Furthermore,

$$H \leq \begin{cases} 3.38p^{1/4} \log p, \text{ for all odd } p, \\ \\ 1.55p^{1/4} \log p, \text{ for } p \geq 10^{13}. \end{cases}$$

There are two differences:

- 1. The explicit constant for all p is changed from 3.64 to 3.38 (an improvement).
- 2. The bound $1.55p^{1/4} \log p$ is proven for $p \ge 10^{13}$ instead of $p \ge 2.5 \cdot 10^9$.

To prove that $H(p) \leq 1.55p^{1/4} \log p$, the only changes in the proof involve correcting Table 2 in [1]. To correct it, replace the first three rows of Table 2 of [1] with the following two rows:

w	h	p	w	h	p	w	h	p
8	36	$[10^{13}, 10^{13.36}]$	8	40	$[10^{13.36}, 10^{13.5}]$	8	41	$[10^{13.5}, 10^{14.4}]$
8	44	$[10^{14.4}, 10^{14.9}]$	9	45	$[10^{14.9}, 10^{16}]$	9	51	$[10^{16}, 10^{17}]$

Table 1

These two rows would replace the first three rows of Table 2 in [1]. The mistake in [1] stemmed from coding incorrectly the function $\gamma(p, w, h)$.

With respect to the error involving the bound for all p. In [1] we chose "large" h to circumvent the constraint $(h/2)^{2/3}p^{1/3} \ge H$, however, this constraint is illusory. If H is larger, we can pick a $H' \le H$ such that $H' \le (h/2)^{2/3}p^{1/3}$ and then use Proposition 1 on H'. It turns out that the choices of h in [1] were not valid because there is a factor g(x) in the calculation of $\gamma(p, w, h)$ which was miscoded and this factor can be negative when h is large with respect to p. But smaller h's would avoid this problem and they come at no penalty because the constraint $(h/2)^{2/3}p^{1/3} \ge H$ is irrelevant. We make the following changes to correct the proof and, in the process, get an improvement:

- 1. We use Brauer's inequality $H < \sqrt{2p} + 2$ for $p \le 10^{6.1}$ as opposed to $p \le 3 \times 10^6$ from [1]. In this narrower range it implies $H < 3.38p^{1/4} \log p$.
- 2. For $p \in [10^{6.1}, 10^7]$ we choose w = 4 and h = 9. This choice of w, h satisfies all the constraints and $\gamma(p, w, h) \leq 3.38$.

- 3. For $p \in [10^7, 10^{10}]$ we choose w = 5 and h = 17.
- 4. For $p \in [10^{10}, 10^{13}]$ we choose w = 6 and h = 28.

We also have mistakes in Remark 2 and Remark 3 of [1]. In Remark 2 we try to prove that Norton's claims are correct, namely that for $p > e^{15}$, it is true that $H(p) < 2.5p^{1/4} \log p$. The proof once again makes the mistake of taking an h that does not satisfy the constraints. What we can prove is that $H(p) < 3p^{1/4} \log p$ for $p > e^{15}$. To correct the proof we make the following changes:

- 1. Let w = 4, h = 11. Then in the range $p \in [e^{15}, 10^7]$ we have $\gamma(p, w, h) < 3$.
- 2. Let w = 5, h = 16. Then in the range $p \in [10^7, 10^9]$ we have $\gamma(p, w, h) < 3$.
- 3. Let w = 6, h = 28. Then in the range $p \in [10^9, 10^{13}]$ we have $\gamma(p, w, h) < 3$. For Remark 3, we should change the bound of $3p^{1/4} \log p$ to $3.1p^{1/4} \log p$ for

the case of the maximum number of consecutive non-residues for which χ remains constant. The proof requires the following changes:

- 1. We use Hudson's inequality: $H < p^{1/2} + 2^{2/3}p^{1/3} + 2^{1/3}p^{1/6} + 1$ for $p \le 10^{6.4}$ as opposed to $p \le 2 \cdot 10^6$. With this change we get that $H(p) < 3.1p^{1/4} \log p$ for $p < 10^{6.4}$.
- 2. For $p \in [10^{6.4}, 10^7]$ we choose w = 5 and h = 10. Then $\gamma(p, w, h) \leq 3.1$.
- 3. For $p \in [10^7, 10^9]$ we choose w = 5 and h = 16. Then $\gamma(p, w, h) \leq 3.1$.
- 4. For $p \in [10^9, 10^{13}]$ we choose w = 6 and h = 36.

Bibliography

 E. Treviño, On the maximum number of consecutive integers on which a character is constant, Mosc. J. Comb. Number Theory 2 (1) (2012), 56–72.

ENRIQUE TREVIÑO

Department of Mathematics and Computer Science, Lake Forest College, Lake Forest, Illinois 60045 trevino@lakeforest.edu