ON THE DISTANCE BETWEEN FROBENIUS NUMBERS

ISKANDER ALIEV AND DILPAK MOHAMMED

Abstract. Let \(n \geq 2 \) and \(k \geq 1 \) be integers and \(\mathbf{a} = (a_1, \ldots, a_n)^t \) be an integer vector with positive coprime entries. The \(k \)-Frobenius number \(F_k(\mathbf{a}) \) is the largest integer that cannot be represented as \(\sum_{i=1}^n a_i x_i \) with \(x_i \in \mathbb{Z}_{\geq 0} \) in at least \(k \) different ways. We study the quantity \((F_k(\mathbf{a}) - F_1(\mathbf{a}))(a_1 \cdots a_n)^{-1/(n-1)} \) and use obtained results to improve existing upper bounds for 2-Frobenius numbers. The proofs are based on packing and covering results from the geometry of numbers.

School of Mathematics and Wales Institute of Mathematical and Computational Sciences, Cardiff University, Senghennydd Road, Cardiff, Wales, UK

E-mail address: alievi@cardiff.ac.uk

E-mail address: mohammeddh@cardiff.ac.uk

2010 Mathematics Subject Classification. 11D07, 11H06, 52C07, 11D45.

Key words and phrases. Frobenius number, successive minima, covering radius, difference body.